【題目】新高考3+3最大的特點就是取消文理科,除語文、數(shù)學(xué)、外語之外,從物理、化學(xué)、生物、政治、歷史、地理這6科中自由選擇三門科目作為選考科目.某研究機(jī)構(gòu)為了了解學(xué)生對全理(選擇物理、化學(xué)、生物)的選擇是否與性別有關(guān),覺得從某學(xué)校高一年級的650名學(xué)生中隨機(jī)抽取男生,女生各25人進(jìn)行模擬選科.經(jīng)統(tǒng)計,選擇全理的人數(shù)比不選全理的人數(shù)多10人.

1)請完成下面的2×2列聯(lián)表;

選擇全理

不選擇全理

合計

男生

5

女生

合計

2)估計有多大把握認(rèn)為選擇全理與性別有關(guān),并說明理由;

3)現(xiàn)從這50名學(xué)生中已經(jīng)選取了男生3名,女生2名進(jìn)行座談,從中抽取2名代表作問卷調(diào)查,求至少抽到一名女生的概率.

附:,其中

015

010

005

0025

0010

0005

0001

2072

2076

3841

5024

6635

7879

10828

【答案】1)見解析;(2,證明見解析;(3

【解析】

1)直接完善列聯(lián)表得到答案.

2)計算,對比臨界值表得到答案.

3)設(shè)選取了男生3名為,女生2名為,列出所有情況,統(tǒng)計滿足條件的情況,相除得到答案.

1

選擇全理

不選擇全理

合計

男生

20

5

25

女生

10

15

25

合計

30

20

50

2,故有的把握認(rèn)為選擇全理與性別有關(guān).

3)設(shè)選取了男生3名為,女生2名為.

故所有情況為:;;,共10種情況.

滿足條件的有:,;共7種情況.

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)()的導(dǎo)函數(shù)為.

(Ⅰ)當(dāng)時,求的最小值;

(Ⅱ)若函數(shù)存在極值,試比較,,的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在股票市場上,投資者常根據(jù)股價每股的價格走勢圖來操作,股民老張在研究某只股票時,發(fā)現(xiàn)其在平面直角坐標(biāo)系內(nèi)的走勢圖有如下特點:每日股價與時間的關(guān)系在ABC段可近似地用函數(shù)的圖象從最高點A到最低點C的一段來描述如圖,并且從C點到今天的D點在底部橫盤整理,今天也出現(xiàn)了明顯的底部結(jié)束信號.老張預(yù)測這只股票未來一段時間的走勢圖會如圖中虛線DEF段所示,且DEF段與ABC段關(guān)于直線l對稱,點B,D的坐標(biāo)分別是

請你幫老張確定a,,的值,并寫出ABC段的函數(shù)解析式;

如果老張預(yù)測準(zhǔn)確,且今天買入該只股票,那么買入多少天后股價至少是買入價的兩倍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小組有7個同學(xué),其中4個同學(xué)從來沒有參加過天文研究性學(xué)習(xí)活動,3個同學(xué)曾經(jīng)參加過天文研究性學(xué)習(xí)活動.

1)現(xiàn)從該小組中隨機(jī)選2個同學(xué)參加天文研究性學(xué)習(xí)活動,求恰好選到1個曾經(jīng)參加過天文研究性學(xué)習(xí)活動的同學(xué)的概率;

2)若從該小組隨機(jī)選2個同學(xué)參加天文研究性學(xué)習(xí)活動,則活動結(jié)束后,該小組有參加過天文研究性學(xué)習(xí)活動的同學(xué)個數(shù)是一個隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程是為參數(shù)),把曲線C的橫坐標(biāo)縮短為原來的,縱坐標(biāo)縮短為原來的一半,得到曲線直線l的普通方程是,以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系.

1)求直線l的極坐標(biāo)方程和曲線的普通方程;

2)記射線)與交于點A,與l交于點B,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,某城區(qū)對轄區(qū)內(nèi),三類行業(yè)共200個單位的生態(tài)環(huán)境治理成效進(jìn)行了考核評估,考評分?jǐn)?shù)達(dá)到80分及其以上的單位被稱為“星級”環(huán)保單位,未達(dá)到80分的單位被稱為“非星級”環(huán)保單位.現(xiàn)通過分層抽樣的方法獲得了這三類行業(yè)的20個單位,其考評分?jǐn)?shù)如下:

類行業(yè):85,82,77,78,8387;

類行業(yè):76,67,80,8579,81

類行業(yè):87,89,76,8675,84,90,82

(Ⅰ)計算該城區(qū)這三類行業(yè)中每類行業(yè)的單位個數(shù);

(Ⅱ)若從抽取的類行業(yè)這6個單位中,再隨機(jī)選取3個單位進(jìn)行某項調(diào)查,求選出的這3個單位中既有“星級”環(huán)保單位,又有“非星級”環(huán)保單位的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某闖關(guān)游戲共有兩關(guān),游戲規(guī)則:先闖第一關(guān),當(dāng)?shù)谝魂P(guān)闖過后,才能進(jìn)入第二關(guān),兩關(guān)都闖過,則闖關(guān)成功,且每關(guān)各有兩次闖關(guān)機(jī)會.已知闖關(guān)者甲第一關(guān)每次闖過的概率均為,第二關(guān)每次闖過的概率均為.假設(shè)他不放棄每次闖關(guān)機(jī)會,且每次闖關(guān)互不影響.

(1)求甲恰好闖關(guān)3次才闖關(guān)成功的概率;

(2)記甲闖關(guān)的次數(shù)為,求隨機(jī)變量的分布列和期望.。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理是類比推理的( )

A. 兩條直線平行,同旁內(nèi)角互補(bǔ),如果是兩條平行直線的同旁內(nèi)角,則

B. 由平面三角形的性質(zhì),推測空間四邊形的性質(zhì)

C. 某校高二級有20個班,1班有51位團(tuán)員,2班有53位團(tuán)員,3班有52位團(tuán)員,由此可以推測各班都超過50位團(tuán)員.

D. 一切偶數(shù)都能被2整除,是偶數(shù),所以能被2整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年某地區(qū)初中升學(xué)體育考試規(guī)定:考生必須參加長跑、擲實心球、1分鐘跳繩三項測試.某學(xué)校在九年級上學(xué)期開始,就為掌握全年級學(xué)生1分鐘跳繩情況,抽取了100名學(xué)生進(jìn)行測試,得到下面的頻率分布直方圖.

(Ⅰ)規(guī)定學(xué)生1分鐘跳繩個數(shù)大于等于185為優(yōu)秀.若在抽取的100名學(xué)生中,女生共有50人,男生1分鐘跳繩個數(shù)大于等于185的有28人.根據(jù)已知條件完成下面的列聯(lián)表,并根據(jù)這100名學(xué)生的測試成績,判斷能否有99%的把握認(rèn)為學(xué)生1分鐘跳繩成績是否優(yōu)秀與性別有關(guān).

1分鐘跳繩成績

優(yōu)秀

不優(yōu)秀

合計

男生人數(shù)

28

女生人數(shù)

100

合計

100

(Ⅱ)根據(jù)往年經(jīng)驗,該校九年級學(xué)生經(jīng)過訓(xùn)練,正式測試時每人1分鐘跳繩個數(shù)都有明顯進(jìn)步.假設(shè)正式測試時每人1分鐘跳繩個數(shù)都比九年級上學(xué)期開始時增加10個,全年級恰有2000名學(xué)生,若所有學(xué)生的1分鐘跳繩個數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和標(biāo)準(zhǔn)差估計,各組數(shù)據(jù)用中點值代替),估計正式測試時1分鐘跳繩個數(shù)大于183的人數(shù)(結(jié)果四舍五入到整數(shù)

附: ,其中 .

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

若隨機(jī)變量服從正態(tài)分布,則

查看答案和解析>>

同步練習(xí)冊答案