【題目】設拋物線的焦點為F,準線為l,AC上一點,已知以F為圓心,FA為半徑的圓FlM.N.

1)若,的面積為,求拋物線方程;

2)若A.M.F三點在同一直線m上,直線nm平行,且nC只有一個公共點,求坐標原點到直線n、m距離的比值.

【答案】1;(2

【解析】

1)由拋物線的定義,以及圓的對稱性可得為等邊三角形,可由其高線求得邊長,進而表達出面積,列方程解得即可求得拋物線方程.

2)由A.M.F三點共線,可得直線斜率,和直線方程;根據(jù)直線nC只有一個公共點,設出直線方程,聯(lián)立拋物線方程,,可求得方程;據(jù)此利用點到直線距離公式求得距離之比.

1)由對稱性以及可知

是等邊三角形.

F點到MN的距離為,故,

由拋物線定義知:點A到準線l的距離

.

故拋物線方程為:.

2)由對稱性設,則

A,M關于點F對稱,得,

得:,直線m斜率

所以直線m方程為.

,設直線n方程為:

又因為直線n與拋物線只有一個公共點,

所以,消去,

,得

直線,

坐標原點到nm距離的比值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】AB為曲線C上兩點,AB的橫坐標之和為4.

(1)求直線AB的斜率;

(2)M為曲線C上一點,CM處的切線與直線AB平行,且AMBM,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列{an}的前n項和為Sn,若S9=81,a3+a5=14

1)求數(shù)列{an}的通項公式;

2)設bn=,若{bn}的前n項和為Tn,證明:Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一個底面半徑為3,軸截面為正三角形的圓錐紙盒,在該紙盒內放一個棱長均為a的四面體,并且四面體在紙盒內可以任意轉動,則a的最大值為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,橢圓經過點.

(1)求橢圓的標準方程;

(2)設點是橢圓上的任意一點,射線與橢圓交于點,過點的直線與橢圓有且只有一個公共點,直線與橢圓交于,兩個相異點,證明:面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓的左、右焦點分別為,橢圓上一點,且垂直于軸,連結并延長交橢圓于另一點,設.

(1)若點的坐標為,求橢圓的方程及的值;

(2)若,求橢圓的離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若曲線處的切線的斜率為3,求實數(shù)的值;

(2)若函數(shù)在區(qū)間上存在極小值,求實數(shù)的取值范圍;

(3)如果的解集中只有一個整數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】足球是世界普及率最高的運動,我國大力發(fā)展校園足球.為了解本地區(qū)足球特色學校的發(fā)展狀況,社會調查小組得到如下統(tǒng)計數(shù)據(jù):

年份x

2014

2015

2016

2017

2018

足球特色學校y(百個)

0.30

0.60

1.00

1.40

1.70

1)根據(jù)上表數(shù)據(jù),計算yx的相關系數(shù)r,并說明yx的線性相關性強弱.

(已知:,則認為yx線性相關性很強;,則認為yx線性相關性一般;,則認為yx線性相關性較):

2)求y關于x的線性回歸方程,并預測A地區(qū)2020年足球特色學校的個數(shù)(精確到個).

參考公式和數(shù)據(jù):,

,

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下圖是國家統(tǒng)計局今年411日發(fā)布的20183月到20193月全國居民消費價格的漲跌幅情況折線圖.(注:20192月與20182月相比較稱同比,20192月與20191月相比較稱環(huán)比),根據(jù)該折線圖,下列結論錯誤的是

A. 20183月至20193月全國居民消費價格同比均上漲

B. 20183月至20193月全國居民消費價格環(huán)比有漲有跌

C. 20193月全國居民消費價格同比漲幅最大

D. 20193月全國居民消費價格環(huán)比變化最快

查看答案和解析>>

同步練習冊答案