【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)千件,需另投入成本,當(dāng)年產(chǎn)量不足80千件時(shí),(萬(wàn)元);當(dāng)年產(chǎn)量不小于80千件時(shí)(萬(wàn)元),通過(guò)市場(chǎng)分析,若每件售價(jià)為500元時(shí),該廠本年內(nèi)生產(chǎn)該商品能全部銷售完.
(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲的利潤(rùn)最大?
【答案】(1);(2).
【解析】
試題分析:(1)當(dāng),時(shí),,當(dāng)時(shí),時(shí),;(2)分段函數(shù)兩段分別用單調(diào)性和基本不等式求最小值,在比較兩最小值的大小即可 .
試題解析:(1)當(dāng),時(shí),,
當(dāng)時(shí),時(shí),
,
(2)當(dāng),時(shí),,
∴當(dāng)時(shí),取得最大值;
當(dāng),時(shí),,
當(dāng),即時(shí),取得最大值.
綜上所述,當(dāng)時(shí),取得最大值1000,
即年產(chǎn)量為100千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的左、右焦點(diǎn)分別為、,且經(jīng)過(guò)點(diǎn)
(I)求橢圓C的方程:
(II)直線y=kx(kR,k≠0)與橢圓C相交于A,B兩點(diǎn),D點(diǎn)為橢圓C上的動(dòng)點(diǎn),且|AD|=|BD|,請(qǐng)問(wèn)△ABD的面積是否存在最小值?若存在,求出此時(shí)直線AB的方程:若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒中裝有編號(hào)分別為1,2,3,4的四個(gè)形狀大小完全相同的小球.
(1)從盒中任取兩球,求取出的球的編號(hào)之和大于5的概率.
(2)從盒中任取一球,記下該球的編號(hào),將球放回,再?gòu)暮兄腥稳∫磺,記下該球的編?hào),求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, .
(1)求當(dāng)時(shí), 的值域;
(2)若函數(shù)在內(nèi)有且只有一個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三共有2000名學(xué)生參加廣安市聯(lián)考,現(xiàn)隨機(jī)抽取100名學(xué)生的成績(jī)(單位:分),并列成如下表所示的頻數(shù)分布表:
組別 | ||||||
頻數(shù) | 6 | 18 | 28 | 26 | 17 | 5 |
(1)試估計(jì)該年級(jí)成績(jī)分的學(xué)生人數(shù);
(2)已知樣本中成績(jī)?cè)?/span>中的6名學(xué)生中,有4名男生,2名女生,現(xiàn)從中選2人進(jìn)行調(diào)研,求恰好選中一名男生一名女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿足,其中,命題實(shí)數(shù)滿足
|x-3|≤1 .
(1)若且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一盒中裝有12個(gè)球,其中5個(gè)紅球,4個(gè)黑球,2個(gè)白球,1個(gè)綠球.從中隨機(jī)取出1球,求:
(1)取出1球是紅球或黑球的概率;
(2)取出1球是紅球或黑球或白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為平行四邊形, 為側(cè)棱的中點(diǎn).
(Ⅰ)求證: ∥平面
(Ⅱ)若,,
求證:平面平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝商場(chǎng)為了了解毛衣的月銷售量y(件)與月平均氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4個(gè)月的月銷售量與當(dāng)月平均氣溫,其數(shù)據(jù)如下表:
(1) 算出線性回歸方程; (a,b精確到十分位)
(2)氣象部門(mén)預(yù)測(cè)下個(gè)月的平均氣溫約為3℃,據(jù)此估計(jì),求該商場(chǎng)下個(gè)月毛衣的銷售量.
(參考公式:)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com