19.設(shè)集合A={x|-1<x<4},B={-1,1,2,4},則A∩B=(  )
A.{1,2}B.{-1,4}C.{-1,2}D.{2,4}

分析 由A與B,求出兩集合的交集即可.

解答 解:∵A={x|-1<x<4},B={-1,1,2,4},
∴A∩B={1,2},
故選:A.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時(shí),f(x)=2x,若對(duì)于任意的x∈[a,a+2],均有f(x+a)≥f2(x),則實(shí)數(shù)a取值范圍是( 。
A.[1,+∞)B.$[-\frac{1}{2},1)$C.$(-∞,-\frac{3}{2}]$D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.命題“若對(duì)任意?n∈N*都有an<an+1,則數(shù)列{an}是遞增數(shù)列”的逆否命題是( 。
A.若數(shù)列{an}是遞減數(shù)列,則對(duì)任意n∈N*都有an≥an+1
B.若數(shù)列{an}是遞減數(shù)列,則存在n∈N*都有an≥an+1
C.若數(shù)列{an}不是遞增數(shù)列,則對(duì)任意n∈N*都有an≥an+1
D.若數(shù)列{an}不是遞增數(shù)列,則存在n∈N*都有an≥an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知復(fù)數(shù)z滿足(3+5i)z=34,則z=( 。
A.-3+5iB.-3-5iC.3+5iD.3-5i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.計(jì)算下列各式的值:
(1)27${\;}^{-\frac{2}{3}}$-(8.5)0+$\root{4}{(-3)^{4}}$;
(2)(lg2)2+lg5•lg20+lg100;
(3)已知5a=3,5b=4,求a、b,并用a,b表示log2512.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知{an}是等差數(shù)列,且a2+a5+a8+a11=48,則a6+a7=24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖所示的多面體是由底面為ABCD的長(zhǎng)方體被截面AEC1F所截得到的,其中AB=4,BC=2,CC1=3,BE=1,則點(diǎn)F到平面AEC的距離為( 。
A.$\frac{1}{7}$B.$\frac{\sqrt{21}}{7}$C.$\frac{4\sqrt{21}}{7}$D.$\frac{8}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.執(zhí)行如圖的流程圖,若p=4,則輸出的S等于$\frac{15}{16}$;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(Ⅰ)若集合A={-1,2,4,6},B={x|x=m2-1,m∈A},請(qǐng)用列舉法表示集合B;
(Ⅱ)已知集合 $A=\left\{{a,\;\frac{a},\;b+1}\right\}$,B={a2,a,0},且A=B,計(jì)算a,b的值;
(Ⅲ)已知全集U=R,集合A={x|log2x≤2},B={x|-2≤x≤3}求:A∩∁UB.

查看答案和解析>>

同步練習(xí)冊(cè)答案