分析 不妨設直線l方程:y=x-$\sqrt{3}$,并與橢圓方程聯(lián)立,利用韋達定理、兩點間距離公式計算即得結論.
解答 解:根據(jù)題意可知c=$\sqrt{{a}^{2}-^{2}}$=$\sqrt{4-1}$=$\sqrt{3}$,
不妨設直線l過右焦點,則l:y=x-$\sqrt{3}$,
聯(lián)立$\left\{\begin{array}{l}{y=x-\sqrt{3}}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,
消去y整理得:5x2-8$\sqrt{3}$x+8=0,
∴xA+xB=$\frac{8\sqrt{3}}{5}$,xAxB=$\frac{8}{5}$,
∴|AB|=$\sqrt{({x}_{A}-{x}_{B})^{2}+({y}_{A}-{y}_{B})^{2}}$
=$\sqrt{({x}_{A}-{x}_{B})^{2}+[({x}_{A}-\sqrt{3})-({x}_{B}-\sqrt{3})]^{2}}$
=$\sqrt{2[({x}_{A}+{x}_{B})^{2}-4{x}_{A}{x}_{B}]}$
=$\sqrt{2•[(\frac{8\sqrt{3}}{5})^{2}-4•\frac{8}{5}]}$
=$\frac{8}{5}$.
點評 本題考查橢圓的簡單性質,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{a}$>$\frac{a+m}{b+m}$ | B. | $\frac{a}$=$\frac{a+m}{b+m}$ | ||
C. | $\frac{a}$<$\frac{a+m}{b+m}$ | D. | $\frac{a}$與$\frac{a+m}{b+m}$間的大小不能確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com