【題目】2019年10月1日,在慶祝新中國成立70周年閱兵中,由我國自主研制的軍用飛機和軍用無人機等參閱航空裝備分秒不差飛越天安門,壯軍威,振民心,令世人矚目.飛行員高超的飛行技術(shù)離不開艱苦的訓(xùn)練和科學(xué)的數(shù)據(jù)分析.一次飛行訓(xùn)練中,地面觀測站觀測到一架參閱直升飛機以千米/小時的速度在同一高度向正東飛行,如圖,第一次觀測到該飛機在北偏西的方向上,1分鐘后第二次觀測到該飛機在北偏東的方向上,仰角為,則直升機飛行的高度為________千米.(結(jié)果保留根號)

【答案】

【解析】

根據(jù)飛行時間和速度可求飛行距離,結(jié)合兩次觀察的方位角及三角形知識可得.

如圖,

根據(jù)已知可得

設(shè)飛行高度為千米,即,則;

在直角三角形中,,所以,;

在直角三角形中,同理可求

因為飛行速度為千米/小時,飛行時間是1分鐘,所以,

所以,解得,故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,集合,集合

1)用列舉法表示集合C;

2)設(shè)集合C的含n個元素所有子集為,記有限集合M的所有元素和為,求的值;

3)已知集合P、Q是集合C的兩個不同子集,若P不是Q的子集,且Q不是P的子集,求所有不同的有序集合對的個數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 經(jīng)過橢圓 的左右焦點,且與橢圓在第一象限的交點為,且三點共線,直線交橢圓, 兩點,且).

(1)求橢圓的方程;

(2)當三角形的面積取得最大值時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓中心在原點,焦點在坐標軸上,直線與橢圓在第一象限內(nèi)的交點是,點軸上的射影恰好是橢圓的右焦點,橢圓另一個焦點是,且.

(1)求橢圓的方程;

(2)直線過點,且與橢圓交于兩點,求的內(nèi)切圓面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義城為D,若滿足條件:存在,使上的值城為),則稱k倍函數(shù),給出下列結(jié)論:①“1倍函數(shù);②“2倍函數(shù):③“3倍函數(shù).其中正確的是(

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足.

1)證明:數(shù)列為等差數(shù)列;

2)設(shè)數(shù)列的前n項和為,若,且對任意的正整數(shù)n,都有,求整數(shù)的值;

3)設(shè)數(shù)列滿足,若,且存在正整數(shù)s,t,使得是整數(shù),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某山地車訓(xùn)練中心有一直角梯形森林區(qū)域,其四條邊均為道路,其中,,千米,千米,千米.現(xiàn)有甲、乙兩名特訓(xùn)隊員進行野外對抗訓(xùn)練,要求同時從地出發(fā)勻速前往地,其中甲的行駛路線是,速度為千米/小時,乙的行駛路線是,速度為千米/小時.

1)若甲、乙兩名特訓(xùn)隊員到達地的時間相差不超過分鐘,求乙的速度的取值范圍;

2)已知甲、乙兩名特訓(xùn)隊員攜帶的無線通訊設(shè)備有效聯(lián)系的最大距離是千米.若乙先于甲到達地,且乙從地到地的整個過程中始終能用通訊設(shè)備對甲保持有效聯(lián)系,求乙的速度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點和直線,直線過直線上的動點且與直線垂直,線段的垂直平分線與直線相交于點

I)求點的軌跡的方程;

II)設(shè)直線與軌跡相交于另一點,與直線相交于點,求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知數(shù)列1,,,3,33,,,,,即當)時,,記).

1)求的值;

2)求當),試用n、k的代數(shù)式表示);

3)對于,定義集合的整數(shù)倍,,且,求集合中元素的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案