精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

時,恒成立,求的值;

恒成立,求的最小值.

【答案】(1);(2).

【解析】

(1)求出函數的導數,通過討論a的范圍,求出函數的單調區(qū)間,求出函數的最大值,從而求出a的值即可;

(2)把fx)≤0恒成立,轉化為lnxax+b恒成立,當a≤0時顯然不滿足題意;當a>0時,要使lnxax+b對任意x>0恒成立,需要直線yax+b與曲線ylnx相切,設出切點坐標,把a,b用切點橫坐標表示,得到a+blnx0﹣1(x0>0),構造函數gxlnx﹣1,利用導數求其最小值得答案.

解:(1)由,得,則.

.

,則,上遞增.

,∴.當時,不符合題意.

② 若,則當時,,遞增;當時,,遞減.

∴當時,.

欲使恒成立,則需

,則.

∴當時,,遞減;當時,,遞增.

∴當時,

綜上所述,滿足題意的.

(2)由(1)知,欲使恒成立,則.

恒成立恒成立函數的圖象不在函數圖象的上方,

又需使得的值最小,則需使直線與曲線的圖象相切.

設切點為,則切線方程為,即..

.

,則.

∴當時,遞減;當時,遞增.

.

的最小值為0.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數fx)=lnx,其中a0.曲線y=fx)在點(1,f1))處的切線與直線y=x+1垂直.

1)求函數fx)的單調區(qū)間;

2)求函數fx)在區(qū)間[1,e]上的極值和最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點的坐標分別為,三角形的兩條邊所在直線的斜率之積是.

(I)求點的軌跡方程;

(II)設直線方程為,直線方程為,直線,點關于軸對稱,直線軸相交于點,求面積關于的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線l的參數方程為(t為參數,0).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為

(Ⅰ)寫出曲線C的直角坐標方程;

(Ⅱ)若直線l與曲線C交于A,B兩點,且AB的長度為2,求直線l的普通方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了研究“教學方式”對教學質量的影響,某高中老師分別用兩種不同的教學方式對入學數學平均分數和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20)學生的數學期末考試成績.

甲班

乙班

合計

優(yōu)秀

不優(yōu)秀

合計

現從甲班數學成績不低于80分的同學中隨機抽取兩名同學,求成績?yōu)?7分的同學至少有一名被抽中的概率;

(II)學校規(guī)定:成績不低于75分的為優(yōu)秀.請?zhí)顚懴旅娴?×2列聯表,并判斷有多大把握認為“成績優(yōu)秀與教學方式有關”.

下面臨界值表供參考:

P(K2k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

.024

6.635

7.879

10.828

(參考公式:K2)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,,E,F分別為ABCD的中點,,MDF中點.現將四邊形BEFC沿EF折起,使平面平面AEFD,得到如圖所示的多面體.在圖中,

1)證明:

2)求二面角E-BC-M的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現對某市工薪階層關于樓市限購令的態(tài)度進行調查,隨機抽調了50人,他們月收入的頻數分布及對樓市限購令贊成人數如下表.

月收入(單位百元)

頻數

5

10

15

10

5

5

贊成人數

4

8

12

5

2

1

(1)由以上統(tǒng)計數據填下面2×2列聯表,并問是否有99%的把握認為月收入以5500元為分界點對樓市限購令的態(tài)度有差異;

月收入不低于55百元的人數

月收入低于55百元的人數

合計

贊成

a=______________

c=______________

______________

不贊成

b=______________

d=______________

______________

合計

______________

______________

______________

(2)試求從年收入位于(單位:百元)的區(qū)間段的被調查者中隨機抽取2人,恰有1位是贊成者的概率。

參考公式:,其中.

參考值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】學生學習的自律性很重要.某學校對自律性與學生成績是否有關進行了調研,從該校學生中隨機抽取了100名學生,通過調查統(tǒng)計得到列聯表的部分數據如下表:

自律性一般

自律性強

合計

成績優(yōu)秀

40

成績一般

20

合計

50

100

1)補全列聯表中的數據;

2)判斷是否有的把握認為學生的自律性與學生成績有關.

參考公式及數據:.

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓)的左、右焦點為,右頂點為,上頂點為.已知

1)求橢圓的離心率;

2)設為橢圓上異于其頂點的一點,以線段為直徑的圓經過點,經過原點的直線與該圓相切,求直線的斜率.

查看答案和解析>>

同步練習冊答案