【題目】為了研究“教學(xué)方式”對教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20)學(xué)生的數(shù)學(xué)期末考試成績.

甲班

乙班

合計(jì)

優(yōu)秀

不優(yōu)秀

合計(jì)

現(xiàn)從甲班數(shù)學(xué)成績不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績?yōu)?7分的同學(xué)至少有一名被抽中的概率;

(II)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀.請?zhí)顚懴旅娴?×2列聯(lián)表,并判斷有多大把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”.

下面臨界值表供參考:

P(K2k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

.024

6.635

7.879

10.828

(參考公式:K2)

【答案】1;(2)列聯(lián)表見解析,有%的把握認(rèn)為成績優(yōu)秀與教學(xué)方式有關(guān).

【解析】

(1)先求得甲班數(shù)學(xué)成績不低于80分的同學(xué)人數(shù)及成績?yōu)?/span>87分的同學(xué)人數(shù),利用排列組合求得基本事件的個(gè)數(shù),根據(jù)古典概型的概率公式計(jì)算可得結(jié)論;(2)根據(jù)莖葉圖分別求出甲、乙班優(yōu)秀的人數(shù)與不優(yōu)秀的人數(shù),列出列聯(lián)表利用相關(guān)指數(shù)公式計(jì)算的觀測值,比較與臨界值的大小判斷成績優(yōu)秀與教學(xué)方式有關(guān)的可靠程度.

解:(1)甲班成績?yōu)?/span>87分的同學(xué)有2個(gè),其他不低于80分的同學(xué)有3個(gè)從甲班數(shù)學(xué)成績不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué)的一切可能結(jié)果組成的基本事件有C=10(個(gè)),“抽到至少有一個(gè)87分的同學(xué)所組成的基本事件有CC+C=(7個(gè)),所以P.

(2)2×2列聯(lián)表如下:

甲班

乙班

合計(jì)

優(yōu)秀

6

14

20

不優(yōu)秀

14

6

20

合計(jì)

20

20

40

K2=6.4>5.024.

因此,我們有97.5%的把握認(rèn)為成績優(yōu)秀與教學(xué)方式有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),拋物線的焦點(diǎn)為,射線與拋物線相交于點(diǎn),與其準(zhǔn)線相交于點(diǎn),則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解高二年級學(xué)生某次數(shù)學(xué)考試成績的分布情況,從該年級的1120名學(xué)生中隨機(jī)抽取了100名學(xué)生的數(shù)學(xué)成績,發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學(xué)生的成績按照,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數(shù)據(jù)低于130分的頻率為

C. 總體的中位數(shù)保留1位小數(shù)估計(jì)為

D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)的坐標(biāo)分別為,.三角形的兩條邊,所在直線的斜率之積是.

1)求點(diǎn)的軌跡方程;

2)設(shè)直線方程為,直線方程為,直線,點(diǎn),關(guān)于軸對稱,直線軸相交于點(diǎn).的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若的極大值點(diǎn),求的值;

2)若上只有一個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

當(dāng)時(shí),恒成立,求的值;

恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距與短軸長相等,長軸長為,設(shè)過右焦點(diǎn)F傾斜角為的直線交橢圓MAB兩點(diǎn).

(1)求橢圓M的方程;

(2)求證:

(3)設(shè)過右焦點(diǎn)F且與直線AB垂直的直線交橢圓MC、D,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且曲線在點(diǎn)處的切線與直線垂直.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)求證:時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體的棱長為,,,,分別是,的中點(diǎn),則過且與平行的平面截正方體所得截面的面積為______,和該截面所成角的正弦值為______

查看答案和解析>>

同步練習(xí)冊答案