【題目】隨著我國經(jīng)濟(jì)模式的改變,電商已成為當(dāng)今城鄉(xiāng)種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元根據(jù)往年的銷售資料,得到該商品一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了噸該商品,現(xiàn)以單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬 元)表示該電商下“個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.
(1)視分布在各區(qū)間內(nèi)的頻率為相應(yīng)的概率,求;
(2)將表示為的函數(shù),求出該函數(shù)表達(dá)式;
(3)在頻率分布直方圖的市場需求量分組中,若以市場需求量落入該區(qū)間的頻率作為市場需求量的概率,求該季度利潤不超過萬元的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知線段上有個確定的點(diǎn)(包括端點(diǎn)與).現(xiàn)對這些點(diǎn)進(jìn)行往返標(biāo)數(shù)(從…進(jìn)行標(biāo)數(shù),遇到同方向點(diǎn)不夠數(shù)時就“調(diào)頭”往回?cái)?shù)).如圖:在點(diǎn)上標(biāo),稱為點(diǎn),然后從點(diǎn)開始數(shù)到第二個數(shù),標(biāo)上,稱為點(diǎn),再從點(diǎn)開始數(shù)到第三個數(shù),標(biāo)上,稱為點(diǎn)(標(biāo)上數(shù)的點(diǎn)稱為點(diǎn)),……,這樣一直繼續(xù)下去,直到,,,…,都被標(biāo)記到點(diǎn)上,則點(diǎn)上的所有標(biāo)記的數(shù)中,最小的是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取5所學(xué)校,對學(xué)生進(jìn)行視力檢查.
(1)求應(yīng)從小學(xué)、中學(xué)中分別抽取的學(xué)校數(shù)目;
(2)若從抽取的5所學(xué)校中抽取2所學(xué)校作進(jìn)一步數(shù)據(jù)
①列出所有可能抽取的結(jié)果;
②求抽取的2所學(xué)校至少有一所中學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,點(diǎn) P的極坐標(biāo)是 ,曲線 C的極坐標(biāo)方程為 .以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為 x軸的正半軸建立平面直角坐標(biāo)系,斜率為﹣1的直線 l經(jīng)過點(diǎn)P.
(1)寫出直線 l的參數(shù)方程和曲線 C的直角坐標(biāo)方程;
(2)若直線 l和曲線C相交于兩點(diǎn)A,B,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體ABCD﹣A1B1C1D1的棱長為1,點(diǎn)E,F(xiàn)分別是棱D1C1 , B1C1的中點(diǎn),過E,F(xiàn)作一平面α,使得平面α∥平面AB1D1 , 則平面α截正方體的表面所得平面圖形為( )
A.三角形
B.四邊形
C.五邊形
D.六邊形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期為,且直線是其圖象的一條對稱軸.
(1)求函數(shù)的解析式;
(2)在中,角、、所對的邊分別為、、,且,,若角滿足,求的取值范圍;
(3)將函數(shù)的圖象向右平移個單位,再將所得的圖象上每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長為原來的倍后所得到的圖象對應(yīng)的函數(shù)記作,已知常數(shù),,且函數(shù)在內(nèi)恰有個零點(diǎn),求常數(shù)與的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:已知函數(shù)
(Ⅰ)若曲線y=f(x)在點(diǎn)P(2,f(2))處的切線的斜率為﹣6,求實(shí)數(shù)a;
(Ⅱ)若a=1,求f(x)的極值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市教育部門為了解全市高三學(xué)生的身高發(fā)育情況,從本市全體高三學(xué)生中隨機(jī)抽取了100人的身高數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析.經(jīng)數(shù)據(jù)處理后,得到了如下圖1所示的頻事分布直方圖,并發(fā)現(xiàn)這100名學(xué)生中,身高不低于1.69米的學(xué)生只有16名,其身高莖葉圖如下圖2所示,用樣本的身高頻率估計(jì)該市高一學(xué)生的身高概率.
(1)求該市高三學(xué)生身高高于1.70米的概率,并求圖1中、、的值.
(2)若從該市高三學(xué)生中隨機(jī)選取3名學(xué)生,記為身高在的學(xué)生人數(shù),求的分布列和數(shù)學(xué)期望;
(3)若變量滿足且,則稱變量滿足近似于正態(tài)分布的概率分布.如果該市高三學(xué)生的身高滿足近似于正態(tài)分布的概率分布,則認(rèn)為該市高三學(xué)生的身高發(fā)育總體是正常的.試判斷該市高三學(xué)生的身高發(fā)育總體是否正常,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5,若以MF為直徑的圓過點(diǎn)(0,2),則C的方程為( )
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com