(本小題15分)
已知(m為常數(shù),m>0且),設(shè)是首項(xiàng)為4,公差為2的等差數(shù)列.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若bn=an·,且數(shù)列{bn}的前n項(xiàng)和Sn,當(dāng)時,求;
(3)若cn=,問是否存在m,使得{cn}中每一項(xiàng)恒小于它后面的項(xiàng)?若存在,
求出m的范圍;若不存在,說明理由.

解:(Ⅰ)由題意   即
                                        
      ∵m>0且,∴m2為非零常數(shù),
∴數(shù)列{an}是以m4為首項(xiàng),m2為公比的等比數(shù)列                 
(Ⅱ)由題意,
當(dāng)
   ①           
①式兩端同乘以2,得
  ②      
②-①并整理,得
 

=
  
(Ⅲ)由題意
要使對一切成立,即 對一切 成立,
① 當(dāng)m>1時, 成立;                  
②當(dāng)0<m<1時,
對一切 成立,只需,
解得 , 考慮到0<m<1,    ∴0<m< 
綜上,當(dāng)0<m<或m>1時,數(shù)列{cn}中每一項(xiàng)恒小于它后面的項(xiàng)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題15分)已知函數(shù)

(1)若函數(shù)處有極值為,求的值;

(2)若對任意,上單調(diào)遞增,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:寧波市2010屆高三三模考試文科數(shù)學(xué)試題 題型:解答題

(本小題15分)已知函數(shù)
(1)若函數(shù)處有極值為,求的值;
(2)若對任意上單調(diào)遞增,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:全國高中數(shù)學(xué)聯(lián)合競賽一試 題型:解答題

(本小題15分)已知是實(shí)數(shù),方程有兩個實(shí)根,,數(shù)列滿足,,
(Ⅰ)求數(shù)列的通項(xiàng)公式(用表示);
(Ⅱ)若,求的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:寧波市2010屆高三三?荚囄目茢(shù)學(xué)試題 題型:解答題

(本小題15分)已知拋物線,過點(diǎn)的直線交拋物線兩點(diǎn),且
(1)求拋物線的方程;
(2)過點(diǎn)軸的平行線與直線相交于點(diǎn),若是等腰三角形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省高二下學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題15分)已知函數(shù)f(x)=(1+x)2-aln(1+x)2在(-2,-1)上是增函數(shù),

在(-∞,-2)上為減函數(shù).

(1)求f(x)的表達(dá)式;

(2)若當(dāng)x∈時,不等式f(x)<m恒成立,求實(shí)數(shù)m的值;

(3)是否存在實(shí)數(shù)b使得關(guān)于x的方程f(x)=x2+x+b在區(qū)間[0,2]上恰好有兩個相異的實(shí)根,若存在,求實(shí)數(shù)b的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案