已知函數(shù)f(x)=|2x+1|+|2x-3|.
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若關(guān)于x的不等式f(x)-log2(a2-3a)>2恒成立,求實數(shù)a的取值范圍.
考點:函數(shù)恒成立問題
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:(Ⅰ)通過對自變量x的范圍的討論,去掉絕對值符號,從而可求得不等式f(x)≤6的解集;
(Ⅱ)不等式f(x)-log2(a2-3a)>2恒成立?log2(a2-3a)+2<f(x)min恒成立,利用絕對值不等式的性質(zhì)易求f(x)min=4,從而解不等式log2(a2-3a)<2即可.
解答: 解:(Ⅰ)原不等式等價于
x>
3
2
(2x+1)+(2x-3)≤6
-
1
2
≤x≤
3
2
(2x+1)-(2x-3)≤6
x<-
1
2
-(2x+1)-(2x-3)≤6
,
解得:
3
2
<x≤2或-
1
2
≤x≤
3
2
或-1≤x<-
1
2
,
∴不等式f(x)≤6的解集為{x|-1≤x≤2}.  
(Ⅱ)不等式f(x)-log2(a2-3a)>2恒成立?log2(a2-3a)+2<f(x)=|2x+1|+|2x-3|恒成立?log2(a2-3a)+2<f(x)min恒成立,
∵|2x+1|+|2x-3|≥|(2x+1)-(2x-3)|=4,
∴f(x)的最小值為4,
log2(a2-3a)+2<4,
a2-3a>0
a2-3a-4<0
,
解得:-1<a<0或3<a<4.
∴實數(shù)a的取值范圍為(-1,0)∪(3,4).
點評:本題考查函數(shù)恒成立問題,著重考查等價轉(zhuǎn)化思想與分類討論思想的綜合運用,考查函數(shù)的單調(diào)性與解不等式組的能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,cos(A+
π
4
)=
3
5
,則cos2A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個五位自然
.
a1a2a3a4a5
,ai∈{0,1,2,3,4,5},i=1,2,3,4,5,當且僅當a1>a2>a3,a3<a4<a5時稱為“凹數(shù)”(如32014,53134等),則滿足條件的五位自然數(shù)中“凹數(shù)”的個數(shù)為( 。
A、110B、137
C、145D、146

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|log2(x+1)|,-1<x<0
-x2+4x,x≥0
,且關(guān)于x的方程f(x)-m=0,(m∈R)恰有三個互不相同的實數(shù)根x1,x2,x3,則x1x2x3的取值范圍是(  )
A、(-4,0)
B、(-
15
4
,0)
C、[-
15
4
,0)
D、[-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且對任意x>0,都有f′(x)>
f(x)
x

(Ⅰ)判斷函數(shù)F(x)=
f(x)
x
在(0,+∞)上的單調(diào)性;
(Ⅱ)設(shè)x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)請將(Ⅱ)中的結(jié)論推廣到一般形式,并證明你所推廣的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解學(xué)生的體能情況,抽取了一個學(xué)校的部分學(xué)生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理成統(tǒng)計圖如圖,已知圖中從左到右各個小組的高度之比分別為1:3:4:2,最左邊一組的頻數(shù)為5,請根據(jù)以上信息和圖形解決以下問題:
(1)參加這次測試的學(xué)生共有多少人?
(2)求第四小組的頻率;
(3)若次數(shù)在75次以上(含75次)為達標,那么,學(xué)生的達標率是多少?
(4)在這次測試中,學(xué)生跳繩次數(shù)的中位數(shù)落在那個小組內(nèi)?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)無窮數(shù)列{an}的首項a1=1,前n項和為Sn(n∈N*),且點(Sn-1,Sn)(n∈N*,n≥2)在直線(2t+3)x-3ty+3t=0上(t為與n無關(guān)的正實數(shù)).
(1)求證:數(shù)列{an}(n∈N*)為等比數(shù)列;
(2)記數(shù)列{an}的公比為f(t),數(shù)列{bn}滿足b1=1,bn=f(
1
bn-1
)(n∈N*,n≥2),
設(shè)cn=b2n-1b2n-b2nb2n+1,求數(shù)列{cn}的前n項和Tn;
(3)(理)若(1)中無窮等比數(shù)列{an}(n∈N*)的各項和存在,記S(t)=a1+a2+…+an+…,求函數(shù)S(t)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f1(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的一段圖象過點(0,1),如圖所示.
(Ⅰ)求函數(shù)f1(x)的解析式;
(Ⅱ)將函數(shù)y=f1(x)的圖象按向量
a
=(
π
4
,0)
平移,得到函數(shù)y=f2(x),求y=f1(x)+f2(x)的最大值,并求此時自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2(a+1)x+2alnx(a>0).
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0在區(qū)間[1,e]上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案