【題目】(1)寫(xiě)出下列兩組誘導(dǎo)公式:

①關(guān)于的誘導(dǎo)公式;

②關(guān)于的誘導(dǎo)公式.

(2)從上述①②兩組誘導(dǎo)公式中任選一組,用任意角的三角函數(shù)定義給出證明.

【答案】(1)詳見(jiàn)解析(2)詳見(jiàn)解析

【解析】

1)按要求寫(xiě)出對(duì)應(yīng)公式即可.2)利用任意角定義以及對(duì)稱(chēng)性即可證明對(duì)應(yīng)公式.

解:(1)①,.

,,.

(2)①證明:設(shè)任意角的終邊與單位圓的交點(diǎn)坐標(biāo)為.

由于角的終邊與角的終邊關(guān)于軸對(duì)稱(chēng),

因此角的終邊與單位圓的交點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng),

所以點(diǎn)的坐標(biāo)是.

由任意角的三角函數(shù)定義得,

,;

,,.

所以,..

②證明:設(shè)任意角的終邊與單位圓的交點(diǎn)坐標(biāo)為.

由于角的終邊與角的終邊關(guān)于軸對(duì)稱(chēng),

因此角的終邊與單位圓的交點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng),

所以點(diǎn)的坐標(biāo)是.

由任意角的三角函數(shù)定義得,

,,;

,,.

所以,,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為 . (Ⅰ)求cosB的值;
(Ⅱ)若 ,求a和c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,側(cè)面底面,底面為矩形,

.

(1)求證: ;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是圓O的直徑,弦CD⊥AB于點(diǎn)M,E是CD延長(zhǎng)線上一點(diǎn),AB=10,CD=8,3ED=4OM,EF切圓O于F,BF交CD于G.
(1)求證:△EFG為等腰三角形;
(2)求線段MG的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)為偶函數(shù),求的值;

(2)若,求函數(shù)的單調(diào)遞增區(qū)間;

(3)當(dāng)時(shí),若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生的課外閱讀時(shí)間情況,某學(xué)校隨機(jī)抽取了50人進(jìn)行統(tǒng)計(jì)分析,把這50人每天閱讀的時(shí)間(單位:分鐘)繪制成頻數(shù)分布表,如下表所示:

閱讀時(shí)間

[0,20)

[20,40)

[40,60)

[60,80)

[80,100)

[100,120]

人數(shù)

8

10

12

11

7

2

若把每天閱讀時(shí)間在60分鐘以上(含60分鐘)的同學(xué)稱(chēng)為“閱讀達(dá)人”,根據(jù)統(tǒng)計(jì)結(jié)果中男女生閱讀達(dá)人的數(shù)據(jù),制作出如圖所示的等高條形圖:

(1)根據(jù)已知條件完成2x2列聯(lián)表;

男生

女生

總計(jì)

閱讀達(dá)人

非閱讀達(dá)人

總計(jì)

(2)并判斷是否有的把握認(rèn)為“閱讀達(dá)人”跟性別有關(guān)?

附:參考公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義在的偶函數(shù),在區(qū)間是減函數(shù),且圖象過(guò)點(diǎn)原點(diǎn),則不等式的解集為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程(φ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)直線l的極坐標(biāo)方程是ρ(sinθ+cosθ)=3 , 射線OM:θ=與圓C的交點(diǎn)為O,P,與直線l的交點(diǎn)為Q,求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二面角α﹣l﹣β為60°,ABα,AB⊥l,A為垂足,CDβ,C∈l,∠ACD=135°,則異面直線AB與CD所成角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案