【題目】如圖,AB是圓O的直徑,弦CD⊥AB于點(diǎn)M,E是CD延長(zhǎng)線上一點(diǎn),AB=10,CD=8,3ED=4OM,EF切圓O于F,BF交CD于G.
(1)求證:△EFG為等腰三角形;
(2)求線段MG的長(zhǎng).
【答案】
(1)證明:連接AF,OF,則A,F(xiàn),G,M共圓,∴∠FGE=∠BAF
∵EF⊥OF,
∴∠EFG=∠BAF,
∴∠EFG=∠FGE
∴EF=EG,
∴△EFG為等腰三角形
(2)解:由AB=10,CD=8可得OM=3,
∴ED= OM=4EF2=EDEC=48,
∴EF=EG=4 ,
連接AD,則∠BAD=∠BFD,
∴MG=EM﹣EG=8﹣4 .
【解析】(1)連接AF,OF,則A,F(xiàn),G,M共圓,∠FGE=∠BAF,證明∠EFG=∠FGE,即可證明:△EFG為等腰三角形;(2)求出EF=EG=4 ,連接AD,則∠BAD=∠BFD,即可求線段MG的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若直線與曲線相切,求的值;
(2)若函數(shù)在上不單調(diào),且函數(shù)有三個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,,,平面底面,.和分別是和的中點(diǎn),求證:
(Ⅰ)底面;
(Ⅱ)平面;
(Ⅲ)平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是拋物線:上異于原點(diǎn)的動(dòng)點(diǎn), 是平面上兩個(gè)定點(diǎn).當(dāng)的縱坐標(biāo)為時(shí),點(diǎn)到拋物線焦點(diǎn)的距離為.
(1)求拋物線的方程;
(2)直線交于另一點(diǎn),直線交于另一點(diǎn),記直線的斜率為,直線的斜率為. 求證: 為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x+1|+|x﹣a|,a∈R. (Ⅰ)當(dāng)a=2時(shí),求不等式f(x)<4的解集.
(Ⅱ)當(dāng)a< 時(shí),對(duì)于x∈(﹣∞,﹣ ],都有f(x)+x≥3成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)寫(xiě)出下列兩組誘導(dǎo)公式:
①關(guān)于與的誘導(dǎo)公式;
②關(guān)于與的誘導(dǎo)公式.
(2)從上述①②兩組誘導(dǎo)公式中任選一組,用任意角的三角函數(shù)定義給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,且對(duì)任意的有. 當(dāng)時(shí),,.
(1)求并證明的奇偶性;
(2)判斷的單調(diào)性并證明;
(3)求;若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,且PA=PD=DA=2,∠BAD=60°
(I)求證:PB⊥AD;
(II)若PB= , 求二面角A﹣PD﹣C的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com