(2012•韶關(guān)二模)(坐標(biāo)系與參數(shù)方程選做題)
已知直線l方程是
x=1+t
y=t-1
(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=1,則圓C上的點(diǎn)到直線l的距離最小值是
2
-1
2
-1
分析:把直線的參數(shù)方程化為普通方程,再把圓C的極坐標(biāo)方程化為普通方程,求出圓心坐標(biāo),再利用點(diǎn)到直線的距離公式求出圓心C到直線l的距離.
解答:解:直線l的參數(shù)方程為
x=1+t
y=t-1
(參數(shù)t∈R),消去t的普通方程為 x-y-2=0,
∵圓C的極坐標(biāo)方程為ρ=1
∴圓C的普通方程為 x2+y2=1,圓心(0,0),半徑為1,
則圓心C到直線l的距離為d=
2
2
=
2
,圓C上的點(diǎn)到直線l的距離最小值是d-r=
2
-1

故答案為:
2
-1
點(diǎn)評(píng):本題以曲線參數(shù)方程、極坐標(biāo)方程出發(fā),考查了參數(shù)方程、極坐標(biāo)方程、普通方程間的互化,直線和圓的位置關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•韶關(guān)二模)數(shù)列{an}對(duì)任意n∈N*,滿足an+1=an+1,a3=2.
(1)求數(shù)列{an}通項(xiàng)公式;
(2)若bn=(
13
)an+n
,求{bn}的通項(xiàng)公式及前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•韶關(guān)二模)已知A是單位圓上的點(diǎn),且點(diǎn)A在第二象限,點(diǎn)B是此圓與x軸正半軸的交點(diǎn),記∠AOB=α,若點(diǎn)A的縱坐標(biāo)為
3
5
.則sinα=
3
5
3
5
;tan(π-2α)=
24
7
24
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•韶關(guān)二模)已知R是實(shí)數(shù)集,M={x|x2-2x>0},N是函數(shù)y=
x
的定義域,則N∩CRM=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•韶關(guān)二模)定義符號(hào)函數(shù)sgnx=
1,x>0
0,x=0
-1,x<0
,設(shè)f(x)=
sgn(
1
2
-x)+1
2
•f1(x)+
sgn( x-
1
2
)+1 
2
•f2(x),x∈[0,1],若f1(x)=x+
1
2
,f2(x)=2(1-x),則f(x)的最大值等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•韶關(guān)二模)在△ABC中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,其中c=2,且
cosA
cosB
=
b
a
=
3
1

(1)求證:△ABC是直角三角形;
(2)設(shè)圓O過(guò)A,B,C三點(diǎn),點(diǎn)P位于劣弧
AC
上,∠PAB=θ,用θ的三角函數(shù)表示三角形△PAC的面積,并求△PAC面積最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案