分析 直接由函數(shù)奇偶性的定義判斷①正確;代值驗(yàn)證②錯(cuò)誤;先判斷函數(shù)單調(diào)性,g(x)有最小值;直接求出f(x)的零點(diǎn),由單調(diào)性及奇偶性和最值說明g(x)無零點(diǎn).
解答 解:f(-x)=$\frac{1}{2}$(e-x-ex)=-$\frac{1}{2}$(ex-e-x)=-f(x),故f(x)為奇函數(shù),
g(-x)=$\frac{1}{2}$(e-x+ex)=g(x),故g(x)為偶函數(shù),故命題①正確,
f(2x)=$\frac{1}{2}$(e2x-e-2x)=$\frac{1}{2}$(ex+e-x)(ex-e-x),
f(x)•g(x)=$\frac{1}{2}$(ex-e-x)$\frac{1}{2}$(e-x+ex)=$\frac{1}{4}$(ex+e-x)(ex-e-x),故命題②不正確;
函數(shù)y=ex,y=-e-x在實(shí)數(shù)集上均為增函數(shù),
∴f(x)在R上單調(diào)遞增,
設(shè)x1<x2<0,
則g(x1)-g(x2)=$\frac{1}{2}$(ex1+e-x1)-$\frac{1}{2}$(ex2+e-x2)=$\frac{1}{2}$[(ex1-ex2)+(1-$\frac{1}{{e}^{{x}_{1}}{e}^{{x}_{2}}}$)],
∵x1<x2<0,
∴g(x1)-g(x2)>0,即g(x1)>g(x2).
g(x)在(-∞,0)上單調(diào)遞減,
當(dāng)x=0時(shí),g(x)有最小值1,且函數(shù)是偶函數(shù),
∴g(x)無零點(diǎn),
由f(x)=0,即$\frac{1}{2}$(ex-e-x)=0,得x=0,
∴f(x)有零點(diǎn)0,故命題③正確.
故答案為:①③.
點(diǎn)評(píng) 本題考查了命題的真假判斷與應(yīng)用,考查了函數(shù)的性質(zhì),是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | 4 | C. | $\frac{9}{2}$ | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | $\frac{8\sqrt{3}}{3}$ | D. | $\frac{16\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | $\frac{3}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最小值2$\sqrt{3}$ | B. | 最大值2$\sqrt{3}$ | C. | 最小值4$\sqrt{3}$ | D. | 最大值4$\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com