15.已知函數(shù)$f(x)=sinx-\sqrt{3}cosx$,則函數(shù)f(x)的圖象的一條對稱軸是( 。
A.$x=\frac{5π}{6}$B.$x=\frac{7π}{12}$C.$x=\frac{π}{3}$D.$x=\frac{π}{6}$

分析 f(x)=2sin(x-$\frac{π}{3}$).令x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,解出答案.

解答 解:f(x)=2sin(x-$\frac{π}{3}$).
令x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,解得 x=kπ+$\frac{5π}{6}$,k∈Z,
當k=0時,x=$\frac{5π}{6}$,
故選:A.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象的對稱性,兩角和差的三角公式的應(yīng)用,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知f(x)=lnx+2.
(I)試分析方程f(x)=kx+k(k>0)在[1,e]上是否有實根,若有實數(shù)根,求出k的取值范圍;否則,請說明理由;
(Ⅱ)若函數(shù)h(x)=f(x)-x-1,數(shù)列{an}的通項公式為an=$\frac{1}{n}$,其前n項和為Sn,根據(jù)函數(shù)h(x)的性質(zhì),求證:2×3×4×…×n>e(n-Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知點P(3,-3),Q(-5,2)則向量$\overrightarrow{PQ}$的坐標為(-8,5).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某幾何體三視圖如右,其中左視圖是邊長為2的正三角形,主視圖為矩形且AA1=3,D為AA1中點.
(1)求該幾何體的體積;
(2)求證:平面BB1C1C⊥平面BDC1; 
(3)BC邊上是否存在點P,使AP∥平面BDC1.若存在,證明該結(jié)論,不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,已知斜三棱柱ABC-A1B1C1的側(cè)面ACC1A1與底面ABC垂直,$∠ABC=90°,BC=2,AC=2\sqrt{3},A{A_1}⊥{A_1}C,A{A_1}={A_1}C$.
(1)求側(cè)棱AA1與底面ABC所成的角;
(2)求頂點C到平面A1ABB1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設(shè)函數(shù)f(n)=k(k∈N+),k是π的小數(shù)點后的第n位數(shù)字,π=3.1415926535…,則$\underset{\underbrace{f(f…f(f(10)))}}{n個f}$(n≥6)等于( 。
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.直線y=$\frac{1}{2}$與曲線y=2sin(x+$\frac{π}{2}$)cos(x-$\frac{π}{2}$)在y軸右側(cè)的交點自左向右依次記為M1,M2,M3,…,則$\overrightarrow{|{M_1}{M_{13}}}$|等于( 。
A.B.C.12πD.13π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.將函數(shù)$y=\sqrt{3}cosx+sinx,(x∈R)$的圖象向右平移θ(θ>0)個單位長度后,所得到的圖象關(guān)于y軸對稱,則θ的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=-2x-1
(1)求出函數(shù)f(x)的解析式;
(2)當x∈[0,1]時,求出f(x)的最小值和最大值.

查看答案和解析>>

同步練習冊答案