20.設(shè)函數(shù)f(n)=k(k∈N+),k是π的小數(shù)點后的第n位數(shù)字,π=3.1415926535…,則$\underset{\underbrace{f(f…f(f(10)))}}{n個f}$(n≥6)等于( 。
A.1B.0C.-1D.2

分析 根據(jù)題意,計算從內(nèi)到外計算f(n)的幾個值,探究函數(shù)值f(n)的特征,從而得出f{f…f[f(10)]}的值.

解答 解:由題設(shè)條件,由內(nèi)到外順次計算如下:
∵π=3.1415926535…,
∴f(10)=5,
∴f(f(10))=f(5)=9,
∴f(f(f(10)))=f(9)=3,
∴f(f(f(f(10))))=f(3)=1,
由于f(1)=1,所以,
當n≥4時,都有則$\underset{\underbrace{f(f…f(f(10)))}}{n個f}$=1(定值),
故選A.

點評 本題主要考查了函數(shù)值的確定,探究函數(shù)值f(n)的特征是什么,從而得出答案,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)0<a<$\frac{1}{2}$,則1-a2,1+a2,$\frac{1}{1-a}$,$\frac{1}{1+a}$按從小到大的順序排列為$\frac{1}{1+a}$<1-a2<1+a2<$\frac{1}{1-a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)一直線上三點A,B,P滿足$\overrightarrow{AP}$=λ$\overrightarrow{PB}$(λ≠-1),O是平面內(nèi)任意一點,則用$\overrightarrow{OA}$,$\overrightarrow{OB}$表示$\overrightarrow{OP}$式子為( 。
A.$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ$\overrightarrow{OB}$B.$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$
C.$\overrightarrow{OP}$=$\frac{1}{λ}$$\overrightarrow{OA}$+$\frac{1}{1+λ}$$\overrightarrow{OB}$D.$\overrightarrow{OP}$=$\frac{1}{1+λ}$$\overrightarrow{OA}$+$\frac{λ}{1+λ}$$\overrightarrow{OB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖:在四棱錐P-ABCD中,底面ABCD是平行四邊形,BC⊥平面PAB,PA⊥AB,M為PB中點,PA=AD=2,AB=1.
(1)求證:PD∥面ACM;
(2)求VD-PMC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)$f(x)=sinx-\sqrt{3}cosx$,則函數(shù)f(x)的圖象的一條對稱軸是(  )
A.$x=\frac{5π}{6}$B.$x=\frac{7π}{12}$C.$x=\frac{π}{3}$D.$x=\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=(sinωx+cosωx)2+$\sqrt{3}$(sin2ωx-cos2ωx),(ω>0)的最小正周期為π.
(1)求ω的值及f(x)的單調(diào)遞增區(qū)間;
(2)在銳角△ABC中,角ABC所對的邊分別為abc,f (A)=$\sqrt{3}$+1,a=2,且b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2$\sqrt{3}$sin($\frac{π}{4}$+$\frac{x}{2}$)sin($\frac{π}{4}$-$\frac{x}{2}$)-sin(π+x),且函數(shù)y=g(x)的圖象與函數(shù)y=f(x)的圖象關(guān)于直線x=$\frac{π}{4}$對稱.
(1)若存在x∈[0,$\frac{π}{2}$),使等式[g(x)]2-mg(x)+2=0成立,求實數(shù)m的最大值和最小值
(2)若當x∈[0,$\frac{11π}{12}$]時不等式f(x)+ag(-x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知正三棱錐V-ABC,底面積為16$\sqrt{3}$,一條側(cè)棱長為2$\sqrt{6}$,計算它的高和斜高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,正方體ABCD-A1B1C1D1的棱長為1,P為BC的中點,Q為線段CC1上的動點,過點A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是②④(寫出所有正確命題的編號).
①當0<CQ<$\frac{1}{2}$時,S為平行四邊形;
②當CQ=$\frac{1}{2}$時,S為等腰梯形;
③當CQ=$\frac{3}{4}$時,S與C1D1的交點R滿足C1R=$\frac{1}{4}$
④當CQ=1時,S的面積為$\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案