【題目】函數(shù),.
(Ⅰ)若,設(shè),試證明存在唯一零點,并求的最大值;
(Ⅱ)若關(guān)于的不等式的解集中有且只有兩個整數(shù),求實數(shù)的取值范圍.
【答案】(1)(2).
【解析】試題分析:(Ⅰ)由題意知,求得,令,,進而判定出函數(shù)的單調(diào)性,求得函數(shù)的最大值.
(Ⅱ)由題意等價于,令,求得,
令,則,即在上單調(diào)遞增,求得,,的值,進而得到實數(shù)的取值范圍.
試題解析:(Ⅰ)證明:由題意知,
于是
令,,
∴在上單調(diào)遞減.
又,,
所以存在,使得,
綜上存在唯一零點.
解:當,,于是,在單調(diào)遞增;
當,,于是,在單調(diào)遞減;
故,
又,,,
故.
(Ⅱ)解:等價于.
,
令,則,
令,則,即在上單調(diào)遞增.
又,,
∴存在,使得.
∴當,在單調(diào)遞增;
當,在單調(diào)遞減.
∵,,,
且當時,,
又,,,
故要使不等式解集中有且只有兩個整數(shù),的取值范圍應(yīng)為.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),,.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當時,討論函數(shù)與圖像的交點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究學生的數(shù)學核素養(yǎng)與抽象(能力指標)、推理(能力指標)、建模(能力指標)的相關(guān)性,并將它們各自量化為1、2、3三個等級,再用綜合指標的值評定學生的數(shù)學核心素養(yǎng);若,則數(shù)學核心素養(yǎng)為一級;若,則數(shù)學核心素養(yǎng)為二級;若,則數(shù)學核心素養(yǎng)為三級,為了了解某校學生的數(shù)學核素養(yǎng),調(diào)查人員隨機訪問了某校10名學生,得到如下結(jié)果:
學生編號 | ||||||||||
(1)在這10名學生中任取兩人,求這兩人的建模能力指標相同的概率;
(2)從數(shù)學核心素養(yǎng)等級是一級的學生中任取一人,其綜合指標為,從數(shù)學核心素養(yǎng)等級不是一級的學生中任取一人,其綜合指標為,記隨機變量,求隨機變量的分布列及其數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù).
(1)函數(shù)在區(qū)間是單調(diào)函數(shù),求實數(shù)的取值范圍;
(2)若存在,使得成立,求滿足條件的最大整數(shù);
(3)如果對任意的都有成立,求實數(shù)的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一臺機器由于使用時間較長,生產(chǎn)的零件有一些缺損.按不同轉(zhuǎn)速生產(chǎn)出來的零件有缺損的統(tǒng)計數(shù)據(jù)如下表所示:
轉(zhuǎn)速x(轉(zhuǎn)/秒) | 16 | 4 | 12 | 8 |
每小時生產(chǎn)有缺損零件數(shù)y(個) | 11 | 9 | 8 | 5 |
(1)作出散點圖;
(2)如果y與x線性相關(guān),求出回歸直線方程;
(3)若實際生產(chǎn)中,允許每小時的產(chǎn)品中有缺損的零件最多為10個,那么,機器的運轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】8人排成一排照相,分別求下列條件下的不同照相方式的種數(shù).
(1)其中甲、乙相鄰,丙、丁相鄰;
(2)其中甲、乙不相鄰,丙、丁不相鄰;
(要求寫出解答過程,并用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校藝術(shù)節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】空間四邊形PABC的各邊及對角線長度都相等,D、E、F、G分別是AB、BC、CA、AP的中點,下列四個結(jié)論中成立的是
①BC∥平面PDF
②DF⊥平面PAE
③平面GDF∥平面PBC
④平面PAE⊥平面ABC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)在實數(shù)集上的圖象是連續(xù)不斷的,且對任意實數(shù)存在常數(shù)使得恒成立,則稱是一個“關(guān)于函數(shù)”.現(xiàn)有下列“關(guān)于函數(shù)”的結(jié)論:
①常數(shù)函數(shù)是“關(guān)于函數(shù)”;
②正比例函數(shù)必是一個“關(guān)于函數(shù)”;
③“關(guān)于函數(shù)”至少有一個零點;
④是一個“關(guān)于函數(shù)”.
其中正確結(jié)論的序號是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com