【題目】某醫(yī)院為促進(jìn)行風(fēng)建設(shè),擬對醫(yī)院的服務(wù)質(zhì)量進(jìn)行量化考核,每個(gè)患者就醫(yī)后可以對醫(yī)院進(jìn)行打分,最高分為100分.上個(gè)月該醫(yī)院對100名患者進(jìn)行了回訪調(diào)查,將他們按所打分?jǐn)?shù)分成以下幾組:第一組,第二組,第三組,第四組,第五組,得到頻率分布直方圖,如圖所示.
(1)求所打分?jǐn)?shù)不低于60分的患者人數(shù);
(2)該醫(yī)院在第二三組患者中按分層抽樣的方法抽取6名患者進(jìn)行深入調(diào)查,之后將從這6人中隨機(jī)抽取2人聘為醫(yī)院行風(fēng)監(jiān)督員,求行風(fēng)監(jiān)督員來自不同組的概率.
【答案】(1)人;(2).
【解析】
(1)由直方圖,求出打分值的頻率,根據(jù)總?cè)藬?shù)為100即可求解.
(2)由直方圖求出第二組和第三組的人數(shù)之比為1:2,利用列舉法求出6人中隨機(jī)抽取2人的基本事件個(gè)數(shù),再利用古典概型的概率計(jì)算公式即可求解.
(1)由直方圖知,所打分值的頻率為
,
人數(shù)為(人)
答:所打分?jǐn)?shù)不低于60分的患者的人數(shù)為人.
(2)由直方圖知,第二三組的頻率分別為0.1和0.2,
則第二三組人數(shù)分別為10人和20人,
所以根據(jù)分層抽樣的方法,抽出的6人中,
第二組和第三組的人數(shù)之比為1:2,
則第二組有2人,記為;第三組有4人,記為.
從中隨機(jī)抽取2人的所有情況如下:共15種
其中,兩人來自不同組的情況有:共8種
兩人來自不同組的概率為
答:行風(fēng)監(jiān)督員來自不同組的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過定點(diǎn)P(3,5),傾斜角為.
(1)寫出直線l的參數(shù)方程和曲線C的標(biāo)準(zhǔn)方程.
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)如果曲線在點(diǎn)處的切線的斜率是,求的值;
(Ⅱ)當(dāng),時(shí),求證:;
(Ⅲ)若存在單調(diào)遞增區(qū)間,請直接寫出的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求圓的直角坐標(biāo)方程,并寫出圓心和半徑;
(2)若直線與圓交于兩點(diǎn),求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】朱世杰是歷史上最未打的數(shù)學(xué)家之一,他所著的《四元玉鑒》卷中“如像招數(shù)一五間”,有如下問題:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉(zhuǎn)多七人,每人日支米三升,共支米四百三石九斗二升,問筑堤幾日?”.其大意為:“官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始,每天派出的人數(shù)比前一天多7人,修筑堤壩的每人每天發(fā)大米3升,共發(fā)出大米40392升,問修筑堤壩多少天”.在這個(gè)問題中,前5天應(yīng)發(fā)大米( )
A. 894升 B. 1170升 C. 1275升 D. 1457升
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖如示的多面體中,平面平面,四邊形是邊長為的正方形, ∥,且.
(1)若分別是中點(diǎn),求證: ∥平面
(2)求此多面體的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線的焦點(diǎn)作傾斜角為45°的直線,直線與拋物線交于,若.
(1)拋物線的方程;
(2)若經(jīng)過的直線交拋物線于,若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A.若兩條直線互相平行,那么它們的斜率相等
B.方程能表示平面內(nèi)的任何直線
C.圓的圓心為,半徑為
D.若直線不經(jīng)過第二象限,則t的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,若橢圓經(jīng)過點(diǎn),且的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)斜率為的直線與以原點(diǎn)為圓心,半徑為的圓交于,兩點(diǎn),與橢圓交于,兩點(diǎn),且,當(dāng)取得最小值時(shí),求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com