解不等式:x2-a>0.
考點:一元二次不等式的解法
專題:不等式的解法及應用
分析:對a分類討論,利用一元二次不等式的解法即可得出.
解答: 解:當a<0時,不等式x2-a>0的解集為R.
當a=0時,不等式x2-a>0的解集為{x|x≠0}.
當a>0時,不等式x2-a>0化為(x+
a
)(x-
a
)
>0,
解得x>
a
或x<-
a
.∴不等式的解集為{x|x>
a
或x<-
a
}.
點評:本題考查了一元二次不等式的解法,考查了分類討論的思想方法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知條件p:
1
x
<1,條件q:|x|≤1,則¬p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、即非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=0,a2=-20,且對任意m、n∈N*都有a2m-1+a2n-1=2am+n-1+2(m-n)2
(Ⅰ)求a3,a5;
(Ⅱ)設bn=a2n+1-a2n-1(n∈N*),證明:{bn}是等差數(shù)列;
(Ⅲ)記數(shù)列{bn}的前n項和為Sn,求正整數(shù)k,使得對任意n∈N*均有sk≤sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右頂點,M是橢圓上異于A,B的任意一點,直線l是橢圓的右準線.
(1)若橢圓C的離心率為
1
2
,直線l:x=4,求橢圓C的方程;
(2)設直線AM交l于點P,以MP為直徑的圓交MB于Q,若直線PQ恰好過原點,求橢圓C的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)證明函數(shù)f(x)=x2-1在(-∞,0)上是減函數(shù);
(2)討論函數(shù)f(x)=x+
1
x
在區(qū)間(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,m∈R+,并且a<b,用分析法證明:
a+m
b+m
a
b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的通項公式為an=n2+kn(n∈N+),若數(shù)列{an}是單調(diào)遞增數(shù)列,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,AC為⊙O的直徑,OB⊥AC,弦BN交AC于點M.若OC=
3
,OM=1,則MN的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=x+
a
x
+lnx,(a∈R)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案