【題目】如圖1,在直角梯形ABCD中,ADC=90°,CDAB,AB=4,AD=CD=2.將ADC沿AC折起,使平面ADC平面ABC,得到幾何體D﹣ABC,如圖2所示.

(Ⅰ)求證:BC平面ACD;

(Ⅱ)求幾何體D﹣ABC的體積.

【答案】見解析

【解析】解:(Ⅰ)

【解法一】:在圖1中,由題意知,,AC2+BC2=AB2,ACBC

取AC中點(diǎn)O,連接DO,則DOAC,又平面ADC平面ABC,

且平面ADC∩平面ABC=AC,DO平面ACD,從而OD平面ABC,

ODBC

又ACBC,AC∩OD=O,

BC平面ACD

【解法二】:在圖1中,由題意,得,AC2+BC2=AB2ACBC

平面ADC平面ABC,平面ADC∩平面ABC=AC,BC面ABC,BC平面ACD

(Ⅱ)由(Ⅰ)知,BC為三棱錐B﹣ACD的高,且,S△ACD=×2×2=2,

所以三棱錐B﹣ACD的體積為:,

由等積性知幾何體D﹣ABC的體積為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)討論的單調(diào)性;

2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當(dāng)點(diǎn)C到平面ABE的距離最大時(shí),該四棱錐的體積為(

A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家文明城市評審委員會對甲、乙兩個(gè)城市是否能入圍國家文明城市進(jìn)行走訪調(diào)查,派出10人的調(diào)查組,先后到甲、乙兩個(gè)城市的街道、社區(qū)進(jìn)行問卷調(diào)查,然后打分(滿分100分),他們給出甲、乙兩個(gè)城市分?jǐn)?shù)的莖葉圖如圖所示:

1)請你用統(tǒng)計(jì)學(xué)的知識分析哪個(gè)城市更應(yīng)該入圍國家文明城市,并說明理由;

2)從甲、乙兩個(gè)城市的打分中各抽取2個(gè),在已知有大于80分的條件下,求抽到乙城市的分?jǐn)?shù)都小于80分的概率.

(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,,的中點(diǎn).

(I)若上的一點(diǎn),且與直線垂直,求的值;

(Ⅱ)在(I)的條件下,設(shè)異面直線所成的角為45°,求直線與平面成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面且邊長為的菱形,側(cè)面為正三角形,其所在平面垂直于底面.

(1)若邊的中點(diǎn),求證:平面.

(2)求證:.

(3)若邊的中點(diǎn),能否在上找出一點(diǎn),使平面 平面?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),集合

1)若集合中有且僅有個(gè)整數(shù),求實(shí)數(shù)的取值范圍;

2)集合,若存在實(shí)數(shù),使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大以來,國家深入推進(jìn)精準(zhǔn)脫貧,加大資金投入,強(qiáng)化社會幫扶,為了更好的服務(wù)于人民,派調(diào)查組到某農(nóng)村去考察和指導(dǎo)工作.該地區(qū)有100戶農(nóng)民,且都從事水果種植,據(jù)了解,平均每戶的年收入為2萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),調(diào)查組和當(dāng)?shù)卣疀Q定動員部分農(nóng)民從事水果加工,據(jù)估計(jì),若能動員戶農(nóng)民從事水果加工,則剩下的繼續(xù)從事水果種植的農(nóng)民平均每戶的年收入有望提高,而從事水果加工的農(nóng)民平均每戶收入將為萬元.

1)若動員戶農(nóng)民從事水果加工后,要使從事水果種植的農(nóng)民的總年收入不低于動員前從事水果種植的農(nóng)民的總年收入,求的取值范圍;

2)在(1)的條件下,要使這100戶農(nóng)民中從事水果加工的農(nóng)民的總收入始終不高于從事水果種植的農(nóng)民的總收入,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某飲品店提供兩種口味的飲料,且每種飲料均有大杯、中杯、小杯三種容量.甲、乙二人各隨機(jī)點(diǎn)一杯飲料,且甲只點(diǎn)大杯,乙點(diǎn)中杯或小杯,則甲、乙所點(diǎn)飲料的口味相同的概率為______.

查看答案和解析>>

同步練習(xí)冊答案