設(shè)雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦點(diǎn)為F,左,右頂點(diǎn)分別為A1,A2.過(guò)F且與雙曲線C的一條漸近線平行的直線l與另一條漸近線相交于P,若P恰好在以A1A2為直徑的圓上,則雙曲線C的離心率為( 。
A、
2
B、2
C、
3
D、3
分析:由題意可得:設(shè)直線l的方程為:y=
b
a
(x-c)
,則P(
c
2
,-
bc
2a
),因?yàn)镻恰好在以A1A2為直徑的圓上,所以
PA1
PA2
=0
,再結(jié)合b2=c2-a2可得答案.
解答:解:由題意可得:雙曲線C:
x2
a2
-
y2
b2
=1
的漸近線方程為:y=±
b
a
x
,
所以設(shè)直線l的方程為:y=
b
a
(x-c)
,則直線l與雙曲線的另一條漸近線的交點(diǎn)為:P(
c
2
,-
bc
2a
),
所以
PA1
=(-a-
c
2
,
bc
2a
)
,
PA2
=(a-
c
2
,
bc
2a
)

因?yàn)镻恰好在以A1A2為直徑的圓上,
所以
PA1
PA2
=0
,即(-a-
c
2
,
bc
2a
) •(a-
c
2
,
bc
2a
)=0
,
所以整理可得:b2c2=4a4-a2c2
所以結(jié)合b2=c2-a2可得:2a2=c2,所以e=
c
a
=
2

故選A.
點(diǎn)評(píng):解決此類問(wèn)題的關(guān)鍵是熟練掌握雙曲線的標(biāo)準(zhǔn)方程與有關(guān)數(shù)值之間的關(guān)系,以及雙曲線的有關(guān)性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線C:
x2
a2
-
y2
b2
=1
的右焦點(diǎn)為F2,過(guò)點(diǎn)F2的直線l與雙曲線C相交于A,B兩點(diǎn),直線l的斜率為
35
,且
AF2
=2
F2B
;
(1)求雙曲線C的離心率;
(2)如果F1為雙曲線C的左焦點(diǎn),且F1到l的距離為 
2
35
3
,求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)設(shè)雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的離心率為e,若準(zhǔn)線l與兩條漸近線相交于P、Q兩點(diǎn),F(xiàn)為右焦點(diǎn),△FPQ為等邊三角形.
(1)求雙曲線C的離心率e的值;
(2)若雙曲線C被直線y=ax+b截得的弦長(zhǎng)為
b2e2
a
求雙曲線c的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線C:
x2
a2
-y2=1 (a>0) 與直線 l:x+y=1
相交于兩個(gè)不同的點(diǎn)A、B.
(1)求a的取值范圍:(2)設(shè)直線l與y軸的交點(diǎn)為P,且
PA
=
5
12
PB
.求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閔行區(qū)一模)設(shè)雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0),R1,R2是它實(shí)軸的兩個(gè)端點(diǎn),l是其虛軸的一個(gè)端點(diǎn).已知其一條漸近線的一個(gè)方向向量是(1,
3
),△lR1R2的面積是
3
,O為坐標(biāo)原點(diǎn),直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點(diǎn),且
OA
OB

(1)求雙曲線C的方程;
(2)求點(diǎn)P(k,m)的軌跡方程,并指明是何種曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閔行區(qū)一模)設(shè)雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的虛軸長(zhǎng)為2
3
,漸近線方程是y=±
3
x
,O為坐標(biāo)原點(diǎn),直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點(diǎn),且
OA
OB

(1)求雙曲C的方程;
(2)求點(diǎn)P(k,m)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案