【題目】如圖,在六面體ABCDA1B1C1D1中,AA1//CC1A1B=A1D,AB=AD.求證:

1AA1BD;

2BB1//DD1.

【答案】1)證明見解析;(2)證明見解析.

【解析】

1)取BD中點(diǎn)E,連接AE、A1E,證明BD⊥平面A1AE,即可證得結(jié)論;

2)證明BB1//CC1DD1//CC1,再利用平行公理,即可證得結(jié)論.

1)取BD中點(diǎn)E,連接AE、A1E

∵△ABD中,AB=ADEBD中點(diǎn)

AEBD,同理可得A1EBD,

AE、A1E平面A1AE,AEA1E=E

BD⊥平面A1AE,

AA1平面A1AE,∴AA1BD;

2)∵AA1//CC1AA1平面AA1B1B,CC1平面AA1B1B

CC1//平面AA1B1B

CC1平面CC1B1B,平面CC1B1B平面AA1B1B=BB1

BB1//CC1,同理可得DD1//CC1,

BB1//DD1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點(diǎn)為。斜率為1的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為。

1)求橢圓的方程;

2)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)是曲線上的動(dòng)點(diǎn),點(diǎn)的延長(zhǎng)線上,且,點(diǎn)的軌跡為

(1)求直線及曲線的極坐標(biāo)方程;

(2)若射線與直線交于點(diǎn),與曲線交于點(diǎn)(與原點(diǎn)不重合),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】德國著名數(shù)學(xué)家狄利克雷(Dirichlet,1805~1859)在數(shù)學(xué)領(lǐng)域成就顯著.19世紀(jì),狄利克雷定義了一個(gè)“奇怪的函數(shù)” 其中R為實(shí)數(shù)集,Q為有理數(shù)集.則關(guān)于函數(shù)有如下四個(gè)命題,正確的為( )

A.函數(shù)是偶函數(shù)

B.,,恒成立

C.任取一個(gè)不為零的有理數(shù)T,對(duì)任意的恒成立

D.不存在三個(gè)點(diǎn),,,使得為等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定橢圓C:(),稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“衛(wèi)星圓”.若橢圓C的離心率,點(diǎn)C上.

(1)求橢圓C的方程和其“衛(wèi)星圓”方程;

(2)點(diǎn)P是橢圓C的“衛(wèi)星圓”上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作直線,使得,與橢圓C都只有一個(gè)交點(diǎn),且,分別交其“衛(wèi)星圓”于點(diǎn)M,N,證明:弦長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“回文數(shù)”是指從左到右與從右到左讀都一樣的正整數(shù),如22,1213553等.顯然2位“回文數(shù)”共9個(gè):11,22,33,…,99.現(xiàn)從9個(gè)不同2位“回文數(shù)”中任取1個(gè)乘以4,其結(jié)果記為X;從9個(gè)不同2位“回文數(shù)”中任取2個(gè)相加,其結(jié)果記為Y

1)求X為“回文數(shù)”的概率;

2)設(shè)隨機(jī)變量表示X,Y兩數(shù)中“回文數(shù)”的個(gè)數(shù),求的概率分布和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)設(shè)函數(shù),討論的單調(diào)性;

2)設(shè)函數(shù),若的圖象與的圖象有兩個(gè)不同的交點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的內(nèi)角AB,C的對(duì)邊分別為a,b,c,,

(1)求角A的大;

(2)若a=3,求△ABC的周長(zhǎng)L的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了解中學(xué)生的課外閱讀時(shí)間,決定在該中學(xué)的1200名男生和800名女生中按分層抽樣的方法抽取20名學(xué)生,對(duì)他們的課外閱讀時(shí)間進(jìn)行問卷調(diào)查.現(xiàn)在按課外閱讀時(shí)間的情況將學(xué)生分成三類:類(不參加課外閱讀),類(參加課外閱讀,但平均每周參加課外閱讀的時(shí)間不超過3小時(shí)),類(參加課外閱讀,且平均每周參加課外閱讀的時(shí)間超過3小時(shí)).調(diào)查結(jié)果如下表:

男生

5

3

女生

3

3

1)求出表中,的值;

2)根據(jù)表中的統(tǒng)計(jì)數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為參加課外閱讀與否與性別有關(guān);

男生

女生

總計(jì)

不參加課外閱讀

參加課外閱讀

總計(jì)

PKk0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案