【題目】四色猜想是世界三大數(shù)學(xué)猜想之一,1976年數(shù)學(xué)家阿佩爾與哈肯證明,稱為四色定理.其內(nèi)容是:“任意一張平面地圖只用四種顏色就能使具有共同邊界的國(guó)家涂上不同的顏色.”用數(shù)學(xué)語(yǔ)言表示為“將平面任意地細(xì)分為不相重疊的區(qū)域,每一個(gè)區(qū)域總可以用,四個(gè)數(shù)字之一標(biāo)記,而不會(huì)使相鄰的兩個(gè)區(qū)域得到相同的數(shù)字.”如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗實(shí)線圍城的各區(qū)域上分別標(biāo)有數(shù)字,,的四色地圖符合四色定理,區(qū)域和區(qū)域標(biāo)記的數(shù)字丟失.若在該四色地圖上隨機(jī)取一點(diǎn),則恰好取在標(biāo)記為的區(qū)域的概率所有可能值中,最大的是( )

A. B. C. D.

【答案】C

【解析】

B1,結(jié)合古典概型計(jì)算公式,得到概率值,即可。

A,B只能有一個(gè)可能為1,題目求最大,令B1,則總數(shù)有30個(gè),1號(hào)有10個(gè),則概率為,故選C。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線的焦點(diǎn)為F,圓,點(diǎn)為拋物線上一動(dòng)點(diǎn).已知當(dāng)的面積為.

(I)求拋物線方程;

(II)若,過(guò)P做圓C的兩條切線分別交y軸于M,N兩點(diǎn),求面積的最小值,并求出此時(shí)P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐中,,且,,,則該三棱錐的外接球的表面積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論極值點(diǎn)的個(gè)數(shù);

(2)若,不等式恒成立,當(dāng)為正數(shù)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班主任對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,喜歡玩電腦游戲的同學(xué)認(rèn)為作業(yè)多的有18人,認(rèn)為作業(yè)不多的有9人,不喜歡玩電腦游戲的同學(xué)認(rèn)為作業(yè)多的有8人,認(rèn)為作業(yè)不多的有15人,則認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)量的多少有關(guān)系的把握大約是多少?

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線.

1)求證:對(duì)直線與圓總有兩個(gè)不同的交點(diǎn);

2)是否存在實(shí)數(shù),使得圓上有四個(gè)點(diǎn)到直線的距離為?若存在,求出的范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體中,是棱的中點(diǎn),是側(cè)面內(nèi)的動(dòng)點(diǎn),且與平面的垂線垂直,如圖所示,下列說(shuō)法不正確的序號(hào)為__________

①點(diǎn)的軌跡是一條線段.②是異面直線.

不可能平行.④三棱錐的體積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列為等差數(shù)列,,,數(shù)列的前項(xiàng)和為,且有.

1)求的通項(xiàng)公式;

2)若,求使成立的的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù). 設(shè)關(guān)于的不等式的解集為,若,則實(shí)數(shù)的取值范圍是___.

查看答案和解析>>

同步練習(xí)冊(cè)答案