3.函數(shù)f(x)=x2-1(x≤-1)的反函數(shù)f-1(x)=$-\sqrt{x+1},(x≥0)$.

分析 由函數(shù)y=x2-1(x≤-1),可得x=$-\sqrt{y+1}$,(y≥0).即可得出反函數(shù).

解答 解:由函數(shù)y=x2-1(x≤-1),可得x=$-\sqrt{y+1}$,(y≥0).
∴函數(shù)f(x)的反函數(shù)f-1(x)=-$\sqrt{x+1}$(x≥0).
故答案為:-$\sqrt{x+1}$(x≥0).

點(diǎn)評(píng) 本題考查了反函數(shù)的求法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列每組中的兩個(gè)函數(shù)是同一函數(shù)的是( 。
A.f(x)=1與g(x)=x0B.$f(x)=\root{3}{x^3}$與g(x)=xC.f(x)=x與$g(x)={(\sqrt{x})^2}$D.f(x)=x與$g(x)=\sqrt{x^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)等差數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn,Tn,若對(duì)于任意的正整數(shù)n都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-3}{4n-3}$,則$\frac{{a}_{9}}{_{5}+_{7}}$+$\frac{{a}_{3}}{_{4}+_{8}}$=( 。
A.$\frac{19}{41}$B.$\frac{9}{7}$C.$\frac{3}{7}$D.$\frac{40}{59}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知集合A={1,2,3,4},B={y|y=2x,x∈A},則A∩B=( 。
A.{1,2,3,4}B.{1,2}C.{2,3}D.{2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知集合A={x|a≤x≤a+3},B={x|x≤-1或x≥3},
(1)若A∩B=∅,求實(shí)數(shù)a的范圍;
(2)若A⊆B,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.定義:對(duì)于數(shù)列{xn},如果存在常數(shù)p,使對(duì)任意正整數(shù)n,總有(xn+1-p)(xn-p)<0成立,那么我們稱數(shù)列{xn}為“p-擺動(dòng)數(shù)列”.
(1)設(shè)an=2n-1,${b_n}={q^n}$(-1<q<0),n∈N*,判斷數(shù)列{an}、{bn}是否為“p-擺動(dòng)數(shù)列”,并說(shuō)明理由;
(2)已知“p-擺動(dòng)數(shù)列”{cn}滿足:${c_{n+1}}=\frac{1}{{{c_n}+1}}$,c1=1.求常數(shù)p的值;
(3)設(shè)${d_n}={(-1)^n}•(\;2n-1)$,n∈N*,且數(shù)列{dn}的前n項(xiàng)和為Sn.求證:數(shù)列{Sn}是“p-擺動(dòng)數(shù)列”,并求出常數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知拋物線y2=2px(p>0)上有兩個(gè)動(dòng)點(diǎn)A,B及一個(gè)定點(diǎn)M(x0,y0),F(xiàn)是拋物線的焦點(diǎn),且|AF|,|MF|,|BF|成等差數(shù)列.求證:線段AB的垂直平分線經(jīng)過(guò)定點(diǎn)Q(x0+p,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)三條直線x-2y=1,2x+ky=3,3kx+4y=5交于一點(diǎn),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=sin2x.
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案