已知、、是橢圓上的三個(gè)動(dòng)點(diǎn),若右焦點(diǎn)的重心,則的值是
A.9B.7C.5D.3
C
依題意可得,右準(zhǔn)線方程為,離心率。設(shè)點(diǎn)橫坐標(biāo)分別為,由橢圓第二定義可得。因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/20140823202044351302.png" style="vertical-align:middle;" />是的重心,所以,所以,故選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,橢圓的中心在坐標(biāo)原點(diǎn),其中一個(gè)焦點(diǎn)為圓的圓心,右頂點(diǎn)是圓F與x軸的一個(gè)交點(diǎn).已知橢圓與直線相交于A、B兩點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)求面積的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)上的兩點(diǎn),
滿足,橢圓的離心率短軸長(zhǎng)為2,0為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)試問:△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是橢圓的左焦點(diǎn),是橢圓短軸上的一個(gè)頂點(diǎn),橢圓的離心率為,點(diǎn)軸上,三點(diǎn)確定的圓恰好與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過作斜率為的直線交橢圓于兩點(diǎn),為線段的中點(diǎn),設(shè)為橢圓中心,射線交橢圓于點(diǎn),若,若存在求的值,若不存在則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為,分別為其左右焦點(diǎn).一動(dòng)圓過點(diǎn),且與直線相切.
(Ⅰ)(。┣髾E圓的方程; (ⅱ)求動(dòng)圓圓心軌跡的方程;
(Ⅱ) 在曲線上有兩點(diǎn),橢圓上有兩點(diǎn),滿足共線,共線,且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的左焦點(diǎn)為, 點(diǎn)在橢圓上, 若線段的中點(diǎn)軸上, 則
A.B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)設(shè)分別為橢圓C:的左右兩個(gè)焦點(diǎn),橢圓上的點(diǎn))到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)
(1)求橢圓的方程;
(2)若是橢圓上的動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線,兩焦點(diǎn)為,過軸的垂線交雙曲線于兩點(diǎn),且內(nèi)切圓的半徑為,則此雙曲線的離心率為  ▲   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓的離心率是,則雙曲線=1的離心率是______。

查看答案和解析>>

同步練習(xí)冊(cè)答案