【題目】已知無窮數(shù)列滿足:,

(Ⅰ)若;

(。┣笞C:

(ⅱ)數(shù)列的前項(xiàng)和為,求證:;

(Ⅱ)若對(duì)任意的,都有,寫出的取值范圍并說明理由.

【答案】(Ⅰ)(ⅰ)見解析;(ⅱ)見解析(Ⅱ),見解析

【解析】

(Ⅰ)(。┦紫雀鶕(jù)已知條件推出的大小關(guān)系,計(jì)算出,然后求出的取值范圍,從而可使問題得證;(ⅱ)首先根據(jù)條件求出,然后求出,從而結(jié)合(。┑慕Y(jié)論使問題得證;

(Ⅱ)首先分三種情況求出的取值范圍,然后當(dāng)時(shí),求出的取值范圍,從而可推出在時(shí),當(dāng)時(shí),,不符合題意,即可求解的取值范圍.

(Ⅰ)證明:(。,

,∵,∴,∴,

②假設(shè)時(shí),,則,

時(shí),,

由①②對(duì)一切正整數(shù)都有,

,

,

,

但當(dāng)時(shí),,

(ⅱ)∵

,

,

,

由(。┲

(Ⅱ)∵對(duì)任意的,都有

,∴顯然,由(I)證明知,

①若,則,∴,∴;

②若,則為常數(shù)列,∴;

③若,則,∴,

,則,則,

,

∴當(dāng)時(shí),有

∴當(dāng)時(shí),,不符合題意.

綜上可知,。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綠水青山就是金山銀山.某山村為做好水土保持,退耕還林,在本村的山坡上種植水果,并推出山村游等旅游項(xiàng)目.為預(yù)估今年7月份游客購買水果的情況,隨機(jī)抽樣統(tǒng)計(jì)了去年7月份100名游客的購買金額.分組如下:, ,得到如圖所示的頻率分布直方圖:

(1)請(qǐng)用抽樣的數(shù)據(jù)估計(jì)今年7月份游客人均購買水果的金額(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表).

(2)若把去年7月份購買水果不低于80元的游客,稱為“水果達(dá)人”. 填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為“水果達(dá)人”與性別有關(guān)系?

水果達(dá)人

非水果達(dá)人

合計(jì)

10

30

合計(jì)

(3)為吸引顧客,商家特推出兩種促銷方案.方案一:每滿80元可立減10元;方案二:金額超過80元可抽獎(jiǎng)三次,每次中獎(jiǎng)的概率為,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)1次打9折,中獎(jiǎng)2次打8折,中獎(jiǎng)3次打7折.若每斤水果10元,你打算購買12斤水果,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.

附:參考公式和數(shù)據(jù):.臨界值表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四個(gè)人到,,三個(gè)景點(diǎn)旅游,每個(gè)人只去一個(gè)景點(diǎn),每個(gè)景點(diǎn)至少有一個(gè)人去,則甲不到景點(diǎn)的方案有(

A.18B.12C.36D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,過點(diǎn)的直線交拋物線兩點(diǎn).

1)當(dāng)時(shí),求直線的方程;

2)若過點(diǎn)且垂直于直線的直線與拋物線交于兩點(diǎn),記的面積分別為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一排10個(gè)位置的空停車場,甲、乙、丙三輛不同的車去停放,要求每輛車左右兩邊都有空車位且甲車在乙、丙兩車之間的停放方式共有_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校在一天上午的5節(jié)課中,安排語文、數(shù)學(xué)、英語三門文化課和音樂、美術(shù)兩門藝術(shù)課各1節(jié),且相鄰兩節(jié)文化課之間最多安排1節(jié)藝術(shù)課,則不同的排課方法共有________種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,其中為常數(shù).

1)求的值及數(shù)列的通項(xiàng)公式;

2)記,數(shù)列的前n項(xiàng)和為,若不等式對(duì)任意恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,圓,圓,橢圓C與圓C1、圓C2均相切.

1)求橢圓C的方程;

2)直線l與圓C1相切同時(shí)與橢圓C交于A、B兩點(diǎn),求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在傳染病學(xué)中,通常把從致病刺激物侵入機(jī)體或者對(duì)機(jī)體發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對(duì)應(yīng)的相關(guān)癥狀時(shí)止的這一階段稱為潛伏期.一研究團(tuán)隊(duì)統(tǒng)計(jì)了某地區(qū)200名患者的相關(guān)信息,得到如下表格:

潛伏期(單位:天)

人數(shù)

17

41

62

50

26

3

1

1)求這200名患者的潛伏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述200名患者中抽取40人得到如下列聯(lián)表.請(qǐng)將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為潛伏期與患者年齡有關(guān);

潛伏期

潛伏期

總計(jì)

50歲以上(含50歲)

20

50歲以下

9

總計(jì)

40

3)以這200名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨(dú)立.為了深入硏究,該研究團(tuán)隊(duì)在該地區(qū)隨機(jī)調(diào)查了10名患者,其中潛伏期超過6天的人數(shù)最有可能(即概率最大)是多少?

附:

0.05

0.025

0.010

3.841

5.024

6.635

,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案