投擲兩顆骰子,得到其向上的點(diǎn)數(shù)分別為m和n,則復(fù)數(shù)(m+ni)(n-mi)為實(shí)數(shù)的概率為   
【答案】分析:由題意知這是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件數(shù)是6×6,要做出滿足條件的事件數(shù)需要先計(jì)算出復(fù)數(shù)(m+ni)(n-mi)為實(shí)數(shù)時(shí)n和m的值,整理復(fù)數(shù),使得它虛部為零,得到n=m,得到結(jié)果.
解答:解:由題意知這是一個(gè)古典概型,
試驗(yàn)發(fā)生包含的事件數(shù)是6×6=36,
而滿足條件的事件是使得復(fù)數(shù)(m+ni)(n-mi)為實(shí)數(shù),
先計(jì)算出復(fù)數(shù)(m+ni)(n-mi)為實(shí)數(shù)時(shí)n和m的值,
∵復(fù)數(shù)(m+ni)(n-mi)=2mn+(m2-n2)i為實(shí)數(shù)
∴m2-n2=0
∴m=n
∴滿足條件的事件數(shù)是6,
∴復(fù)數(shù)(m+ni)(n-mi)為實(shí)數(shù)的概率是=,
故答案為:
點(diǎn)評(píng):這是一個(gè)概率同復(fù)數(shù)結(jié)合的問(wèn)題,是一個(gè)綜合題,解題時(shí)需要先根據(jù)復(fù)數(shù)的條件得到概率中滿足條件的事件數(shù),雖是綜合題,但本題的運(yùn)算量不大,是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

投擲兩顆骰子,得到其向上的點(diǎn)數(shù)分別為m,n,設(shè)
a
=(m,n)
,則滿足|
a
|<5
的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

投擲兩顆骰子,得到其向上的點(diǎn)數(shù)分別為m和n,則復(fù)數(shù)(m+ni)(n-mi)為實(shí)數(shù)的概率為( 。
A、
1
3
B、
1
4
C、
1
6
D、
1
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

投擲兩顆骰子,得到其向上的點(diǎn)數(shù)分別為m和n,則復(fù)數(shù)(m+ni)(n-mi)為實(shí)數(shù)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•桂林一模)投擲兩顆骰子,得到其向上的點(diǎn)數(shù)分別為m和n,則復(fù)數(shù)(m+ni)2為純虛數(shù)的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

投擲兩顆骰子,得到其向上的點(diǎn)數(shù)分別為m和n,則復(fù)數(shù)(m-ni)2為純虛數(shù)的概率為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案