16.設(shè)m,n,l為空間不重合的直線,α,β,γ是空間不重合的平面,則下列說法正確的個數(shù)是1
①m∥l,n∥l,則m∥n;
②m⊥l,n⊥l,則m∥n;
③若m∥l,m∥α,則l∥α;
④若l∥m,l?α,m?β,則α∥β;
⑤若m?α,m∥β,l?β,l∥α,則α∥β

分析 在①中,由平行公理得m∥n;在②中,m與n相交、平行或異面;在③中,l∥α或l?α;在④中,α與β相交或平行;在⑤中,α與β相交或平行.

解答 解:由m,n,l為空間不重合的直線,α,β,γ是空間不重合的平面,知:
①m∥l,n∥l,則由平行公理得m∥n,故①正確;
②m⊥l,n⊥l,則m與n相交、平行或異面,故②錯誤;
③若m∥l,m∥α,則l∥α或l?α,故③錯誤;
④若l∥m,l?α,m?β,則α與β相交或平行,故④錯誤;
⑤若m?α,m∥β,l?β,l∥α,則α與β相交或平行,故⑤錯誤.
故答案為:1.

點評 本題考查命題真假的判斷,是中檔題,解題時要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.定義:若函數(shù)f(x)與g(x)有共同的解析式和值域,則稱f(x)與g(x)是“相似函數(shù)”,若f(x)=x2+1,x∈{±1,±2},則與f(x)相似的函數(shù)有9個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知直線x-2y+1=0與直線2x-4y+1=0平行,則這兩條平行線之間的距離為$\frac{\sqrt{5}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示數(shù)陣,記an為數(shù)字n的個數(shù),記An為an個數(shù)字n的和.已知數(shù)列{bn}滿足bn=$\frac{1}{{A}_{n}+5n}$,Bn為數(shù)列{bn}的前n項和,且Bn<t恒成立.
(1)an=2n-1;An=2n2-n;
(2)已知橢圓C的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{2{t}^{2}}$+$\frac{{y}^{2}}{{t}^{2}}$=1(t>0).P為C的下頂點,過點P的直線l斜率為t.直線l過定點M,且與C交于另一點N.若PN的中點為E,求$\frac{EP}{MP}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.三棱錐P-ABC,PA=PB=PC=2,∠APC=∠APB=∠BPC=$\frac{π}{6}$,一只螞蟻從A處出發(fā)沿三棱錐的側(cè)面爬一周,最短路線為$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=x•1nx,g(x)=ax2-2ax+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若x∈[1,2],a∈[1,2],求證:f(x)≥g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=2|x-1|-|x+2|,解不等式f(x)≥6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知△ABC中,C=2A,cosA=$\frac{3}{4}$,且AB•BC=24,則AC的長度為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{6}}{3}$,過點R(-1,0)的直線l與橢圓C交于P,Q兩點,且$\overrightarrow{PR}$=2$\overrightarrow{RQ}$.(1)當(dāng)直線l的傾斜角為60°時,求三角形OPQ的面積;
(2)當(dāng)三角形OPQ的面積最大時,求橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊答案