【題目】將函數(shù)f(x)=cos(x+ )圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的 倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的一個減區(qū)間是(
A.[﹣ , ]
B.[﹣ ]
C.[﹣ , ]
D.[﹣ ]

【答案】D
【解析】解:將函數(shù)f(x)=cos(x+ )圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的 倍,縱坐標(biāo)不變,
則y=cos(2x+ ),
即g(x)=cos(2x+ ),
由2kπ≤2x+ ≤2kπ+π,k∈Z,
得kπ﹣ ≤x≤kπ+ ,k∈Z,
即函數(shù)的單調(diào)遞減區(qū)間為[kπ﹣ ,kπ+ ],k∈Z,
當(dāng)k=0時(shí),單調(diào)遞減區(qū)間為[﹣ , ],
故選:D.
【考點(diǎn)精析】利用函數(shù)y=Asin(ωx+φ)的圖象變換對題目進(jìn)行判斷即可得到答案,需要熟知圖象上所有點(diǎn)向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知X是離散型隨機(jī)變量,P(X=1)= ,P(X=a)= ,E(X)= ,則D(2X﹣1)等于( )
A.
B.﹣
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3 ax2 , 且關(guān)于x的方程f(x)+a=0有三個不等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,﹣ )∪(0,
B.(﹣ ,0)∪( ,+∞)
C.(﹣ ,
D.(﹣∞,﹣ )∪( ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中, =
(1)求角A;
(2)若a=2,且sinB+cos(C+2B﹣ )取得最大值時(shí),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,AB為圓O的直徑,CD為垂直AB的一條弦,垂足為E,弦AG交CD于F.

(1)求證:E、F、G、B四點(diǎn)共圓;
(2)若GF=2FA=4,求線段AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x|x﹣a|,若對于任意的x1 , x2∈[﹣2,+∞),x1≠x2 , 不等式 >0恒成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,D是BC的中點(diǎn).

(1)若E為B1C1的中點(diǎn),求證:BE∥平面AC1D;
(2)若平面B1BCC1⊥平面ABC,且AB=AC,求證:平面AC1D⊥平面B1BCC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= +lnx,其中a為實(shí)常數(shù).
(1)討論f(x)的單調(diào)性;
(2)不等式f(x)≥1在x∈(0,1]上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (θ為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcosθ=﹣2.
(1)求C1和C2在直角坐標(biāo)系下的普通方程;
(2)已知直線l:y=x和曲線C1交于M,N兩點(diǎn),求弦MN中點(diǎn)的極坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案