8.已知p:|x-m|<4,q:(x-2)(x-3)<0,且q是p的充分不必要條件,則m的取值范圍為[-1,6].

分析 分別求出關(guān)于p,q成立的x的范圍,結(jié)合q是p的充分不必要條件,得到關(guān)于m的不等式組,解出即可.

解答 解:關(guān)于p:|x-m|<4,
解得:m-4<x<m+4,
關(guān)于q:(x-2)(x-3)<0,
解得:2<x<3,
若q是p的充分不必要條件,
則$\left\{\begin{array}{l}{m-4≤2}\\{m+4≥3}\end{array}\right.$,解得:-1≤m≤6,
故答案為:[-1,6].

點(diǎn)評 本題考查了解不等式問題,考查充分必要條件,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.?dāng)?shù)列a1,a2-a1,a3-a2,…an-an-1是以1為首項(xiàng)、$\frac{1}{3}$為公比的等比數(shù)列,則{an}的通項(xiàng)公式an=$\frac{3}{2}(1-\frac{1}{{3}^{n}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若命題”?x∈R,使x2+(2a-1)x+1<0”是假命題,則實(shí)數(shù)a的取值范圍為$[-\frac{1}{2},\frac{3}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C1:$\frac{y^2}{a^2}$+$\frac{x^2}{b^2}$=1(a>b>0)與拋物線C2:x2=2py(p>0)有一公共焦點(diǎn),拋物線C2的準(zhǔn)線l與橢圓C1有一交點(diǎn)坐標(biāo)是($\sqrt{2}$,-2).
(1)求橢圓C1與拋物線C2的方程;
(2)若點(diǎn)P是直線l上的動點(diǎn),過點(diǎn)P作拋物線的兩條切線,切點(diǎn)分別為A,B,直線AB與橢圓C1分別交于點(diǎn)E,F(xiàn),求$\overrightarrow{OE}$•$\overrightarrow{OF}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.直線x=-2的傾斜角和斜率分別是( 。
A.45°,1B.135°,-1C.90°,不存在D.180°,不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知橢圓C:$\frac{x^2}{4}$+$\frac{y^2}{2}$=1與直線L:y=x+m相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則△AOB面積的最大值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=x2-|x|-a-1有四個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是$-\frac{5}{4}$<a<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=-5sin($\frac{π}{6}$-3x)的頻率為$\frac{3}{2π}$,,振幅為5,初相為-$\frac{π}{6}$,當(dāng)x=$\frac{2π}{9}$+$\frac{2kπ}{3}$,k∈Z時(shí),y取最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=sin$(2x-\frac{π}{6})$圖象的對稱軸方程為x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,對稱中心坐標(biāo)為($\frac{kπ}{2}$+$\frac{π}{12}$,0),k∈Z,最大值時(shí)x的集合為{x|x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z}.

查看答案和解析>>

同步練習(xí)冊答案