分析 利用分子有理化可得f(n)=$\sqrt{{n}^{2}+1}$-n=$\frac{1}{\sqrt{{n}^{2}+1}+n}$,φ(n)=$\frac{1}{2n}$,g(n)=n-$\sqrt{{n}^{2}-1}$=$\frac{1}{n+\sqrt{{n}^{2}-1}}$,n∈N*,從而比較大小即可.
解答 解:f(n)=$\sqrt{{n}^{2}+1}$-n=$\frac{1}{\sqrt{{n}^{2}+1}+n}$,n∈N*,
φ(n)=$\frac{1}{2n}$,n∈N*,
g(n)=n-$\sqrt{{n}^{2}-1}$=$\frac{1}{n+\sqrt{{n}^{2}-1}}$,n∈N*,
∵$\frac{1}{\sqrt{{n}^{2}+1}+n}$<$\frac{1}{n+\sqrt{{n}^{2}-1}}$,
∴A=max|f(n),g(n)|=g(n),
∵$\frac{1}{2n}$<$\frac{1}{n+\sqrt{{n}^{2}-1}}$,
∴B=max|A,φ(n)|=g(n)=$\frac{1}{n+\sqrt{{n}^{2}-1}}$=n-$\sqrt{{n}^{2}-1}$.
點(diǎn)評 本題考查了分子有理化的應(yīng)用及函數(shù)比較大小的應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 16 | C. | 17 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 600 | B. | 464 | C. | 300 | D. | 210 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com