【題目】已知函數(shù).
(1)當時,求該函數(shù)的值域;
(2)求不等式的解集;
(3)若對于恒成立,求的取值范圍.
【答案】(1)(2)或(3)
【解析】
(1)利用換元法并結(jié)合二次函數(shù)的性質(zhì)即可求出函數(shù)值域;(2)利用換元法并結(jié)合一元二次不等式的性質(zhì),即可求出不等式的解集;(3)將分離于不等式的一端,對另一端求它的最值,進而可以求出的取值范圍。
(1)令,,則,
函數(shù)轉(zhuǎn)化為,,
則二次函數(shù),在上單調(diào)遞減,在上單調(diào)遞增,
所以當時,取到最小值為,當時,取到最大值為5,
故當時,函數(shù)的值域為.
(2)由題得,令,
則,即,
解得或,
當時,即,解得,
當時,即,解得,
故不等式的解集為或.
(3)由于對于上恒成立,
令,,則
即在上恒成立,
所以在上恒成立,
因為函數(shù)在上單調(diào)遞增,也在上單調(diào)遞增,
所以函數(shù)在上單調(diào)遞增,它的最大值為,
故時,對于恒成立。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 ,若函數(shù)
(1)若,求的極大值與極小值。
(2)若函數(shù)在區(qū)間上是增函數(shù),求的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的點P和線段AC上的點D,滿足PD=DA,PB=BA,則四面體PBCD的體積的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列滿足|an﹣ |≤1,n∈N* .
(1)求證:|an|≥2n﹣1(|a1|﹣2)(n∈N*)
(2)若|an|≤( )n , n∈N* , 證明:|an|≤2,n∈N* .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:
(1)請將上表數(shù)據(jù)補充完整;函數(shù)的解析式為 (直接寫出結(jié)果即可);
(2)根據(jù)表格中的數(shù)據(jù)作出一個周期的圖象;
(3)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性 ;
(2)若對任意恒成立,求實數(shù)的取值范圍;
(3)當時,若函數(shù)有兩個極值點,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)銳角三角形的內(nèi)角A,B,C的對邊分別為a、b、c,且sinA-cosC=cos(A-B).
(1)求B的大小;
(2)求cosA+sinC的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x+1)lnx﹣a(x﹣1).
(1)當a=4時,求曲線y=f(x)在(1,f(1))處的切線方程;
(2)若當x∈(1,+∞)時,f(x)>0,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù)),以坐標原點為極點,以x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρsin(θ+ )=2 .
(1)寫出C1的普通方程和C2的直角坐標方程;
(2)設(shè)點P在C1上,點Q在C2上,求|PQ|的最小值及此時P的直角坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com