【題目】某種產(chǎn)品的廣告費(fèi)用支出(萬(wàn)元)與銷售(萬(wàn)元)之間有如下的對(duì)應(yīng)數(shù)據(jù):

2

4

5

6

8

30

40

60

50

70

若由資料可知對(duì)呈線性相關(guān)關(guān)系,試求:

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)據(jù)此估計(jì)廣告費(fèi)用支出為10萬(wàn)元時(shí)銷售收入的值.

(參考公式: ,.)

【答案】(1);(2).

【解析】分析:(1)先求出橫標(biāo)和縱標(biāo)的平均數(shù),得到這組數(shù)據(jù)的樣本中心點(diǎn),利用最小二乘法做出線性回歸方程的系數(shù),再做出的值,得到線性回歸方程.
(3)把所給的的值代入線性回歸方程,求出的值,這里的的值是一個(gè)預(yù)報(bào)值,或者說(shuō)是一個(gè)估計(jì)值.

詳解:

(1)由題目條件可計(jì)算出,,

,

y關(guān)于x的線性回歸方程為.

(2)當(dāng)時(shí),,

據(jù)此估計(jì)廣告費(fèi)用支出為10萬(wàn)元時(shí)銷售收入為萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種零件按質(zhì)量標(biāo)準(zhǔn)分為1,2,3,4,5五個(gè)等級(jí).現(xiàn)從一批該零件中隨機(jī)抽取20個(gè),對(duì)其等級(jí)進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下:

(1)在抽取的20個(gè)零件中,等級(jí)為5的恰有2個(gè),求;

(2)在(1)的條件下,從等級(jí)為3和5的所有零件中,任意抽取2個(gè),求抽取的2個(gè)零件等級(jí)恰好相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是函數(shù)的導(dǎo)函數(shù)的圖象,給出下列命題:

①-2是函數(shù)的極值點(diǎn);

是函數(shù)的極值點(diǎn);

處取得極大值;

④函數(shù)在區(qū)間上單調(diào)遞增.則正確命題的序號(hào)是

A. ①③ B. ②④ C. ②③ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】,,,,這六個(gè)數(shù)字.

)能組成多少個(gè)無(wú)重復(fù)數(shù)字的四位偶數(shù).

)能組成多少個(gè)比大的四位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了31日至35日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日期

31

32

33

34

35

溫差x(℃)

10

11

13

12

8

發(fā)芽數(shù)y()

23

25

30

26

16

(1)請(qǐng)根據(jù)32日至34日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(1)中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)P(﹣1,﹣2)的直線l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsinθtanθ=2a(a>0),直線l與曲線C相交于不同的兩點(diǎn)M、N.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若|PM|=|MN|,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12)

已知函數(shù),.

)求的定義域;

)判斷的奇偶性并予以證明;

)當(dāng)時(shí),求使的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的最小正周期為,且其圖象的一個(gè)對(duì)稱軸為,將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮小到原來(lái)的倍,再將圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象.

1)求的解析式,并寫出其單調(diào)遞增區(qū)間;

2)求函數(shù)在區(qū)間上的零點(diǎn);

3)對(duì)于任意的實(shí)數(shù),記函數(shù)在區(qū)間上的最大值為,最小值為,求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所發(fā)現(xiàn),一中作物的年收獲量y(單位:kg)與它”相近“作物的株數(shù)x具有線性相關(guān)關(guān)系(所謂兩株作物”相近“是指它們的直線距離不超過(guò)1m),并分別記錄了相近作物的株數(shù)為1,2,3,5,6,7時(shí),該作物的年收獲量的相關(guān)數(shù)據(jù)如下:

X

1

2

3

5

6

7

y

60

55

53

46

45

41


(Ⅰ)求該作物的年收獲量y關(guān)于它”相近“作物的株數(shù)x的線性回歸方程;
(Ⅱ)農(nóng)科所在如圖所示的正方形地塊的每個(gè)格點(diǎn)(指縱、橫直線的交叉點(diǎn))處都種了一株該作物,其中每一個(gè)小正方形的面積為1,若在所種作物中隨機(jī)選取一株,求它的年收獲量的分布列與數(shù)學(xué)期望.(注:年收獲量以線性回歸方程計(jì)算所得數(shù)據(jù)為依據(jù))
附:對(duì)于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸直線y=a+bx的斜率和截距的最小二乘估計(jì)分別為 = = , =

查看答案和解析>>

同步練習(xí)冊(cè)答案