【題目】已知函數(shù)的最小正周期為,且其圖象的一個(gè)對(duì)稱軸為,將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮小到原來(lái)的倍,再將圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象.

1)求的解析式,并寫(xiě)出其單調(diào)遞增區(qū)間;

2)求函數(shù)在區(qū)間上的零點(diǎn);

3)對(duì)于任意的實(shí)數(shù),記函數(shù)在區(qū)間上的最大值為,最小值為,求函數(shù)在區(qū)間上的最大值.

【答案】1,單調(diào)遞增區(qū)間為;

2、、;(3.

【解析】

1)由函數(shù)的最小正周期求出的值,由圖象的對(duì)稱軸方程得出的值,從而可求出函數(shù)的解析式;

2)先利用圖象變換的規(guī)律得出函數(shù)的解析式,然后在區(qū)間上解方程可得出函數(shù)的零點(diǎn);

3)對(duì)分三種情況、分類(lèi)討論,分析函數(shù)在區(qū)間上的單調(diào)性,得出,可得出關(guān)于的表達(dá)式,再利用函數(shù)的單調(diào)性得出函數(shù)的最大值.

1)由題意可知,,.

,即,

即函數(shù)的圖象的對(duì)稱軸方程為.

由于函數(shù)圖象的一條對(duì)稱軸方程為,

,,則,因此,.

函數(shù)的單調(diào)遞增區(qū)間為;

2)將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)縮小到原來(lái)的倍,得到函數(shù).

再將所得函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,

得到函數(shù).

,即,化簡(jiǎn)得,

.

由于,當(dāng)時(shí),;當(dāng)時(shí),.

因此,函數(shù)上的零點(diǎn)為、;

3)當(dāng)時(shí),函數(shù)上單調(diào)遞增,在上單調(diào)遞減,

所以,,由于,

此時(shí),

當(dāng)時(shí),函數(shù)上單調(diào)遞增,在上單調(diào)遞減,

所以,,由于,,

此時(shí),;

當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞減,

所以,,,

此時(shí),.

所以,.

當(dāng)時(shí),函數(shù)單調(diào)遞減,;

當(dāng)時(shí),函數(shù)單調(diào)遞增,此時(shí);

當(dāng)時(shí),,當(dāng)時(shí),.

綜上所述:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的十一面體中,用種不同顏色給這個(gè)幾何體各個(gè)頂點(diǎn)染色,每個(gè)頂點(diǎn)染一種顏色,要求每條棱的兩端點(diǎn)異色,則不同的染色方案種數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)用支出(萬(wàn)元)與銷(xiāo)售(萬(wàn)元)之間有如下的對(duì)應(yīng)數(shù)據(jù):

2

4

5

6

8

30

40

60

50

70

若由資料可知對(duì)呈線性相關(guān)關(guān)系,試求:

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)據(jù)此估計(jì)廣告費(fèi)用支出為10萬(wàn)元時(shí)銷(xiāo)售收入的值.

(參考公式: .)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)關(guān)于 x 的函數(shù)fx=lgx2﹣2x﹣3的定義域?yàn)榧?/span> A,函數(shù) g(x)=x﹣a,(0≤x≤4)的值域?yàn)榧?/span> B.

(1)求集合 A,B;

(2)若集合 A,B 滿足 A∩B=B,求實(shí)數(shù) a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C所對(duì)的邊為a、b、c,且 asinC﹣c(2+cosA)=0.
(1)求角A的大小;
(2)若△ABC的最大邊長(zhǎng)為 ,且sinC=2sinB,求最小邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)M(x,y)到直線l:x=3的距離是它到點(diǎn)D(1,0)的距離的 倍.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)設(shè)軌跡C上一動(dòng)點(diǎn)T滿足: =2λ +3μ ,其中P、Q是軌跡C上的點(diǎn),且直線OP與OQ的斜率之積為﹣ .若N(λ,μ)為一動(dòng)點(diǎn),F(xiàn)1(﹣ ,0)、F2 ,0)為兩定點(diǎn),求|NF1|+|NF2|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)ω0)的最小正周期為π

(Ⅰ)求ω的值和fx)的單調(diào)遞增區(qū)間;

(Ⅱ)若關(guān)于x的方程fx)﹣m0在區(qū)間[0]上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】意大利著名數(shù)學(xué)家斐波那契在研究兔子的繁殖問(wèn)題時(shí),發(fā)現(xiàn)有這樣的一列數(shù):1,1,2,3,5,8,…,該數(shù)列的特點(diǎn)是:前兩個(gè)數(shù)均為1,從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和.人們把這樣的一列數(shù)組成的數(shù)列{an}稱為斐波那契數(shù)列,則 =(
A.0
B.﹣1
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知常數(shù),在數(shù)列中,首項(xiàng),是其前項(xiàng)和,且,.

1)設(shè),,證明數(shù)列是等比數(shù)列,并求出的通項(xiàng)公式;

2)設(shè),,證明數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;

3)若當(dāng)且僅當(dāng)時(shí),數(shù)列取到最小值,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案