數(shù)列{bn}(n∈N*)是遞增的等比數(shù)列,且b1+b3=5,b1b3=4.求數(shù)列{bn}的通項(xiàng)公式.
考點(diǎn):等比數(shù)列的通項(xiàng)公式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:結(jié)合已知聯(lián)立方程組求解b1,b3的值,求出等比數(shù)列的公比,然后直接代入等比數(shù)列的通項(xiàng)公式即可.
解答: 解:聯(lián)立
b1+b3=5
b1b3=4
,
解得
b1=1
b3=4
b1=4
b3=1

∵數(shù)列{bn}(n∈N*)是遞增的等比數(shù)列,
∴b1=1,b3=4.
設(shè)等比數(shù)列的公比為q,則b3=b1q2,
即q2=4,q=2(數(shù)列是遞增數(shù)列).
bn=b1qn-1=1×2n-1=2n-1
點(diǎn)評(píng):本題考查了等比數(shù)列的通項(xiàng)公式,考查了方程組的解法,是基礎(chǔ)的計(jì)算題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)y=x+1與圓x2+y2=1的位置關(guān)系為( 。
A、相切B、相離
C、直線(xiàn)過(guò)圓心D、相交但直線(xiàn)不過(guò)圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)U={(x,y)|x,y∈R},A={(x,y)|
y-3
x-2
=1},B={(x,y)|y=x+1},求∁UA與B的公共元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2+2x+a=0},B={x|x>0},是否存在實(shí)數(shù)a,使A∩B=∅?若存在,求出實(shí)數(shù)a的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f﹙x﹚是以3為周期的周期函數(shù),其定義域?yàn)镽,當(dāng)x∈﹙1,4﹚時(shí),f(x)=3x-2,試求當(dāng)x∈﹙7,10﹚時(shí)的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a1=-2,a2+a8=16,求其前11項(xiàng)的和s11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù) f(x)=loga(1-ax2)(a>0且a≠1)
(1)若0<a<1,討論函數(shù)f(x)的單調(diào)性;
(2)解不等式f(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的公比q不等于1,sn為其前n項(xiàng)的和,若a1+an=66,a2•an-1=128,sn=126,求n和q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sinαcosα<0,sinαtanα<0,化簡(jiǎn):sin2αtanα+
cos2α
tanα
+2sinαcosα

查看答案和解析>>

同步練習(xí)冊(cè)答案