【題目】已知橢圓C: =1(a>b>0)的離心率為 ,且經(jīng)過點(diǎn)(1, ),F(xiàn)1 , F2是橢圓的左、右焦點(diǎn).
(1)求橢圓C的方程;
(2)點(diǎn)P在橢圓上運(yùn)動(dòng),求|PF1||PF2|的最大值.

【答案】
(1)解:由題意,得 ,解得

∴橢圓C的方程是


(2)解:∵P在橢圓上運(yùn)動(dòng),

∴|PF1|+|PF2|=2a=4,

∴|PF1||PF2|≤ ,

當(dāng)且僅當(dāng)|PF1|=|PF2|時(shí)等號成立,

∴|PF1||PF2|的最大值為4


【解析】(1)由已知列關(guān)于a,b,c的方程組,求解方程組可得a,b,c的值,則橢圓方程可求;(2)由題意定義可得|PF1|+|PF2|=2a=4,再由基本不等式求得|PF1||PF2|的最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且滿足 + =4cosC. (Ⅰ)求 的值;
(Ⅱ)若tanA=2tanB,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題: ①共線向量是在同一條直線上的向量;
②若兩個(gè)向量不相等,則它們的終點(diǎn)不可能是同一點(diǎn);
③與已知非零向量共線的單位向量是唯一的;
④若四邊形ABCD是平行四邊形,則 , 分別共線.
其中正確命題的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期為π,且其圖象向左平移 個(gè)單位后得到函數(shù)g(x)=cosωx的圖象,則函數(shù)f(x)的圖象(
A.關(guān)于直線x= 對稱
B.關(guān)于直線x= 對稱
C.關(guān)于點(diǎn)( ,0)對稱
D.關(guān)于點(diǎn)( ,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)正六角星薄片(其對稱軸與水面垂直)勻速地升出水面,直到全部露出水面為止,記時(shí)刻t薄片露出水面部分的圖形面積為S(t)(S(0)=0),則導(dǎo)函數(shù)y=S'(t)的圖象大致為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD是一個(gè)歷史文物展覽廳的俯視圖,點(diǎn)E在AB上,在梯形BCDE區(qū)域內(nèi)部展示文物,DE是玻璃幕墻,游客只能在△ADE區(qū)域內(nèi)參觀,在AE上點(diǎn)P處安裝一可旋轉(zhuǎn)的監(jiān)控?cái)z像頭,∠MPN為監(jiān)控角,其中M、N在線段DE(含端點(diǎn))上,且點(diǎn)M在點(diǎn)N的右下方,經(jīng)測量得知:AD=6米,AE=6米,AP=2米,∠MPN= ,記∠EPM=θ(弧度),監(jiān)控?cái)z像頭的可視區(qū)域△PMN的面積為S平方米.
(1)求S關(guān)于θ的函數(shù)關(guān)系式,并寫出θ的取值范圍:(參考數(shù)據(jù):tan ≈3)
(2)求S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校統(tǒng)考中,甲、乙兩班數(shù)學(xué)學(xué)科前10名的成績?nèi)绫恚?
(I)若已知甲班10位同學(xué)數(shù)學(xué)成績的中位數(shù)為125,乙班10位同學(xué)數(shù)學(xué)成績的平均分為130,求x,y的值;
(Ⅱ)設(shè)定分?jǐn)?shù)在135分之上的學(xué)生為數(shù)學(xué)尖優(yōu)生,從甲、乙兩班的所有數(shù)學(xué)尖優(yōu)生中任兩人,求兩人在同一班的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,若b(tanA+tanB)= ctanB,BC邊的中線長為1,則a的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)不等式組 所表示的平面區(qū)域?yàn)镈n , 記Dn內(nèi)的整點(diǎn)個(gè)數(shù)為an(n∈N*).(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記數(shù)列{an}的前n項(xiàng)和為Sn , 且 ,若對于一切的正整數(shù)n,總有Tn≤m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案