分析 由條件可得a=b+(a-b),二次運(yùn)用基本不等式,注意等號(hào)成立的條件,即可得到最小值.
解答 解:0<b≤a,即為a-b≥0,
a=b+(a-b)≥2$\sqrt{b(a-b)}$,
則a2+$\frac{4}{b(a-b)}$≥(2$\sqrt{b(a-b)}$)2+$\frac{4}{b(a-b)}$=4b(a-b)+$\frac{4}{b(a-b)}$≥2$\sqrt{4b(a-b)•\frac{4}{b(a-b)}}$=8.
當(dāng)且僅當(dāng)b=a-b,且4b(a-b)=$\frac{4}{b(a-b)}$,即a=2,b=1,
取得最小值8.
故答案為:8.
點(diǎn)評(píng) 本題考查基本不等式的運(yùn)用:求最值,注意等號(hào)成立的條件,以及變形:a=b+(a-b),屬于中檔題和易錯(cuò)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 增函數(shù) | B. | 減函數(shù) | C. | 先增后減 | D. | 先減后增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | M⊆∁UN | B. | M?∁UN | C. | ∁UM=∁UN | D. | M=N |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com