已知奇函數(shù)f(x)在(-∞,0)上單調(diào)遞增,且f(2)=0,則不等式(x-1)•f(x-1)>0的解集是( 。
A、(-1,3)
B、(-∞-1)
C、(-∞-1)∪(3,+∞)
D、(-1,1)∪(1,3)
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:先根據(jù)函數(shù)f(x)的奇偶性以及函數(shù)在區(qū)間(-∞,0)上的單調(diào)性,判斷函數(shù)在區(qū)間(0,+∞)的單調(diào)性,再把不等式(x-1)f(x-1)>0變形為兩個(gè)不等式組,根據(jù)函數(shù)的單調(diào)性分情況解兩個(gè)不等式組,所得解集求并集即可.
解答: 解:∵函數(shù)f(x)為奇函數(shù)且在(-∞,0)上單調(diào)遞增,
∴f(x)在(0,+∞)上也單調(diào)遞增,
∴(x-1)f(x-1)>0可變形為
x-1>0
f(x-1)>0
①或
x-1<0
f(x-1)<0

又∵函數(shù)f(x)為奇函數(shù)且f(2)=0,∴f(-2)=-f(2)=0
∴不等式組①的解為
x-1>0
x-1>2
即x>3;
不等式組②的解為
x-1<0
x-1<-2
,即x<-1.
∴不等式(x-1)f(x-1)>0的解集為(-∞,-1)∪(3,+∞).
故選:C.
點(diǎn)評(píng):本題主要考查綜合運(yùn)用函數(shù)的單調(diào)性與奇偶性解不等式,研究此類題最好作出函數(shù)圖象輔助判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)求式子(
125
27
)-
2
3
的值得
 
  
(2)化簡(jiǎn)式子(a2-2+a-2)÷(a2-a-2)得
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由集合A={0,2}所有真子集為元素構(gòu)成的集合為M,則M=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=e-x(x-1).給出以下命題:
①當(dāng)x<0時(shí),f(x)=ex(x+1);              
②函數(shù)f(x)有五個(gè)零點(diǎn);
③若關(guān)于x的方程f(x)=m有解,則實(shí)數(shù)m的取值范圍是f(-2)≤m≤f(2);
④對(duì)?x1,x2∈R,|f(x2)-f(x1)|<2恒成立.
其中正確命題的序號(hào)是( 。
A、①④B、①③C、②③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知三棱柱ABC-A1B1C1,點(diǎn)A1在底面ABC上的射影恰為AC的中點(diǎn)D,∠BCA=90°,AC=BC=2,BA1⊥AC1
(Ⅰ)求證:AC1⊥平面A1BC;
(Ⅱ)求二面角B1-A1B-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)sin2θ=a,cos2θ=b,0<θ<
π
4
,給出tan(θ+
π
4
)
值的四個(gè)答案:
b
1-a
;②
a
1-b
;③
1+b
a
;④
1+a
b

其中正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面α⊥平面β,α∩β=l,A∈α,B∈β,AC⊥l,垂足為C,BD⊥l,垂足為D(點(diǎn)C,D不重合),若AC>BD,則( 。
A、AD>BC,∠ABC>∠BAD
B、AD>BC,∠ABC<∠BAD
C、AD<BC,∠ABC>∠BAD
D、AD<BC,∠ABC<∠BAD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對(duì)任意的實(shí)數(shù)x、y都有f(x+y)=f(x)+f(y)-1,且當(dāng)x>0時(shí),f(x)>1.
(Ⅰ)求證:函數(shù)f(x)在R上是增函數(shù);
(Ⅱ)若關(guān)于x的不等式f(x2-ax+5a)<f(m)的解集為{x|-3<x<2},求m的值.
(Ⅲ)若f(1)=2,求f(2014)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=(2m+1)x+m-3
(1)若函數(shù)圖象經(jīng)過原點(diǎn),求m的值
(2)若這個(gè)函數(shù)是一次函數(shù),且y隨著x的增大而減小,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案