4.三棱錐P-ABC中,∠APB=∠BPC=∠CPA=90°,M在△ABC內(nèi),∠MPA=∠MPB=60°,則∠MPC=45°.

分析 過M做平面PBC的垂線,交平面PBC于Q,連接PQ,由公式:cos∠MPB=cos∠MPQ×cos∠QPB,得到cos∠QPB=$\frac{\sqrt{6}}{3}$,從而可得cos∠QPC=$\frac{\sqrt{3}}{3}$,再用公式:cos∠MPC=cos∠MPQ×cos∠QPC,即可求∠MPC.

解答 解:如圖,過M做平面PBC的垂線,交平面PBC于Q,連接PQ.
∵∠APB=∠APC=90°,∴AP⊥平面PBC,
∵MQ⊥平面PBC,∴AP∥MQ,
∵∠MPA=60°,∴∠MPQ=90°-60°=30°.
由公式:cos∠MPB=cos∠MPQ×cos∠QPB,得到cos∠QPB=$\frac{\sqrt{6}}{3}$.
∵∠QPC是∠QPB的余角,∴cos∠QPC=$\frac{\sqrt{3}}{3}$.
再用公式:cos∠MPC=cos∠MPQ×cos∠QPC,得到cos∠MPC=$\frac{\sqrt{2}}{2}$.
∴∠MPC=45°.
故答案為:45°.

點評 本題考查空間角,考查學(xué)生分析解決問題的能力,利用好公式是關(guān)鍵,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)當(dāng)平面PBC與平面PDC垂直時,求PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖所示,一種醫(yī)用輸液瓶可以視為兩個圓柱的組合體.開始輸液時,滴管內(nèi)勻速滴下球狀液體,其中球狀液體的半徑$r=\root{3}{10}$毫米,滴管內(nèi)液體忽略不計.如果瓶內(nèi)的藥液恰好156分鐘滴完,則每分鐘應(yīng)滴下75滴.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知定義域為(0,+∞)的函數(shù)f(x)滿足:(1)對任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)當(dāng)x∈(1,2]時,f(x)=2-x.給出如下結(jié)論:
①對任意m∈Z,有f(2m)=0;②函數(shù)f(x)的值域為[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減”的充要條件是“存在k∈Z,使得(a,b)⊆(2k,2k+1)”;其中所有正確結(jié)論的序號是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知三棱柱ABC-A1B1C1的底面是正三角形,所有棱長都是6,頂點A1在底面ABC內(nèi)的射影是△ABC的中心,則四面體A1ABC,B1ABC,C1ABC公共部分的體積等于( 。
A.6$\sqrt{2}$B.6$\sqrt{3}$C.12$\sqrt{2}$D.12$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知i是虛數(shù)單位,設(shè)復(fù)數(shù)z1=1+i,z2=1+2i,則$\frac{{z}_{1}}{{z}_{2}}$在復(fù)平面內(nèi)對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知A,B為雙曲線E的左,右頂點,點M在E上,△ABM為等腰三角形,且頂角為135°,則E的離心率為( 。
A.$\sqrt{5}$B.$\sqrt{3}$C.$\sqrt{2}$D.$\root{4}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知映射f:P→Q是從P到Q的一個函數(shù),則P,Q的元素(  )
A.可以是點B.可以是方程C.必須是實數(shù)D.可以是三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.計算:
(1)$\frac{5}{6}{a}^{\frac{1}{3}^{-2}}$×(-3a${\;}^{-\frac{1}{2}}$b-1)÷(4a${\;}^{\frac{2}{3}}$b-3)${\;}^{\frac{1}{2}}$;
(2)log3$\sqrt{27}$+lg4+lg25+6${\;}^{lo{g}_{4}}$2+(-2)0

查看答案和解析>>

同步練習(xí)冊答案