已知O為坐標(biāo)原點(diǎn),F(xiàn)是拋物線E:y2=4x的焦點(diǎn).
(Ⅰ)過F作直線l交拋物線E于P,Q兩點(diǎn),求
OP
OQ
的值;
(Ⅱ)過點(diǎn)T(t,0)作兩條互相垂直的直線分別交拋物線E于A,B,C,D四點(diǎn),且M,N分別為線段AB,CD的中點(diǎn),求△TMN的面積最小值.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(Ⅰ)設(shè)直線l的方程為l:x=ty+1,由
x=ty+1
y2=4x
,得y2-4ty-4=0,由此利用韋達(dá)定理和向量的數(shù)量積公式能求出
OP
OQ
的值.
(Ⅱ)設(shè)AB:x=my+t,CD:x=-
1
m
y+t
,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),分別令直線AB,CD與拋物線E聯(lián)立方程組,求出M點(diǎn)和N點(diǎn)坐標(biāo),從而求出|TM|和|TN|,由此利用均值定理能求出△TMN的面積最小值.
解答: 解:(Ⅰ)設(shè)直線l的方程為l:x=ty+1,設(shè)P(x1,y1),Q(x2,y2
x=ty+1
y2=4x
,消去x,并整理,得y2-4ty-4=0,
∴y1+y2=4t,y1y2=-4,
∴x1x2=(ty1+1)(ty2+1)=t2y1y2+t(y1+y2)+1=1
OP
OQ
=x1x2+y1y2=-3.(4分)
(Ⅱ)根據(jù)題意得AB,CD斜率存在
設(shè)AB:x=my+t,CD:x=-
1
m
y+t
,
設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4
x=my+t
y2=4x
y2-4my-4t=0
,
y1+y2
2
=2m⇒
x1+x2
2
=2m2+t⇒M(2m2+t,2m)

同理可得N(
2
m2
+t,-
2
m
)

|TN|=
4
m4
+
4
m2
=
2
|m|2
m2+1
,
|TM|=
4m4+4m2
=2|m|
m2+1

S△TMN=
1
2
|TM||TN|=2(|m|+
1
|m|
)≥4
,
當(dāng)且僅當(dāng)|m|=1時,面積取到最小值4.(12分)
點(diǎn)評:本題考查向量數(shù)量積的求法,考查三角形面積的最小值的求法,解題時要認(rèn)真審題,注意均值定理的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px的焦點(diǎn)F與橢圓
x2
9
+
y2
5
=1的右焦點(diǎn)重合,其準(zhǔn)線與x軸相交于點(diǎn)M,點(diǎn)A在此拋物線上,且|AM|=
2
|AF|,則△AMF的內(nèi)切圓半徑的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個頂點(diǎn)都在拋物線y2=2px(p>0)上,且拋物線的焦點(diǎn)F滿足
FA
+
FB
+
FC
=
0
,若BC邊上的中線所在直線l的方程為mx+ny-m=0(m,n為常數(shù)且m≠0).
(Ⅰ)求p的值;
(Ⅱ)O為拋物線的頂點(diǎn),△OFA、△OFB、△OFC的面積分別記為S1、S2、S3,求證:S12+S22+S32為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在10名演員中,5人能歌,8人善舞,從中選出5人,使這5人能演出一個由1人獨(dú)唱4人伴舞的節(jié)目,共有幾種選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P(4,4),圓C:(x-1)2+y2=5與橢圓E:
x2
18
+
y2
2
=1
有一個公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓左、右焦點(diǎn),直線PF1與圓C相切.設(shè)Q為橢圓E上的一個動點(diǎn),求
AP
AQ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的方程為y=
1
2p
x2
,焦點(diǎn)F(0,1).直線y=2與拋物線C交于M,N兩點(diǎn)A,B在拋物線C上.
(1)求拋物線C的方程;
(2)若∠BMN=∠AMN,求證:直線AB的斜率為定值;
(3)若直線AB的斜率為
2
,且點(diǎn)N到直線MA,MB的距離的和為8,試判斷△MAB的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知離心率為
3
2
的橢圓C1的頂點(diǎn)A1,A2恰好是雙曲線
x2
3
-y2=1的左右焦點(diǎn),點(diǎn)P是橢圓C1上不同于A1,A2的任意一點(diǎn),設(shè)直線PA1,PA2的斜率分別為k1,k2
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)當(dāng)k1=
1
2
,在焦點(diǎn)在x軸上的橢圓C1上求一點(diǎn)Q,使該點(diǎn)到直線PA2的距離最大.
(3)試判斷乘積“k1•k2”的值是否與點(diǎn)P的位置有關(guān),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的對稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F1和F2,且|F1F2|=2,點(diǎn)(1,
3
2
)在該橢圓上.
(1)求橢圓C的方程;
(2)斜率為1且過F1的直線l與橢圓C相交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
6
3
,過點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為
3
2

(1)求橢圓的方程.
(2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案