【題目】△ABC的三個內(nèi)角A、B、C的對邊分別是a,b,c,給出下列命題: ①若sinBcosC>﹣cosBsinC,則△ABC一定是鈍角三角形;
②若sin2A+sin2B=sin2C,則△ABC一定是直角三角形;
③若bcosA=acosB,則△ABC為等腰三角形;
④在△ABC中,若A>B,則sinA>sinB;
其中正確命題的序號是 . (注:把你認為正確的命題的序號都填上)

【答案】②③④
【解析】解:①若sinBcosC>﹣cosBsinCsinBcosC+cosBsinC=sin(B+C)>00<B+C<π,所以①不一定成立; ②∵sinA= ,sinB= ,sinC= ,∴ + = ,即a2+b2=c2 , ∴△ABC是直角三角形,②成立,
③若bcosA=acosB2rsinBcosA=2rsinAcosBsin(B﹣A)=0A=B即③成立.
④在△ABC中,若A>Ba>b2rsinA>2rsinBsinA>sinB即④成立;
故正確命題的是②③④.
所以答案是:②③④.
【考點精析】根據(jù)題目的已知條件,利用命題的真假判斷與應(yīng)用的相關(guān)知識可以得到問題的答案,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,江的兩岸可近似地看出兩條平行的直線,江岸的一側(cè)有, 兩個蔬菜基地,江岸的另一側(cè)點處有一個超市.已知、、中任意兩點間的距離為千米,超市欲在之間建一個運輸中轉(zhuǎn)站, , 兩處的蔬菜運抵處后,再統(tǒng)一經(jīng)過貨輪運抵處,由于, 兩處蔬菜的差異,這兩處的運輸費用也不同.如果從處出發(fā)的運輸費為每千米元.從處出發(fā)的運輸費為每千米元,貨輪的運輸費為每千米元.

(1)設(shè),試將運輸總費用(單位:元)表示為的函數(shù),并寫出自變量的取值范圍;

(2)問中轉(zhuǎn)站建在何處時,運輸總費用最?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2≥1}, ,則A∩(RB)=(
A.(2,+∞)
B.(﹣∞,﹣1]∪(2,+∞)
C.(﹣∞,﹣1)∪(2,+∞)
D.[﹣1,0]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對邊分別為a,b,c且acosC,bcosB,ccosA成等差數(shù)列.
(1)求B的值;
(2)求2sin2A﹣1+cos(A﹣C)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機抽取了40輛汽車在經(jīng)過路段上某點時的車速(km/h),現(xiàn)將其分成六段: , , , ,后得到如圖所示的頻率分布直方圖.

(Ⅰ)現(xiàn)有某汽車途經(jīng)該點,則其速度低于80km/h的概率約是多少?

(Ⅱ)根據(jù)直方圖可知,抽取的40輛汽車經(jīng)過該點的平均速度約是多少?

(Ⅲ)在抽取的40輛且速度在(km/h)內(nèi)的汽車中任取2輛,求這2輛車車速都在(km/h)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司2016年前三個月的利潤(單位:百萬元)如下:

月份

1

2

3

利潤

2

3.9

5.5

(1)求利潤關(guān)于月份的線性回歸方程;

(2)試用(1)中求得的回歸方程預(yù)測4月和5月的利潤;

(3)試用(1)中求得的回歸方程預(yù)測該公司2016年從幾月份開始利潤超過1000萬?

相關(guān)公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我市某機構(gòu)為調(diào)查2017年下半年落實中學(xué)生“陽光體育”活動的情況,設(shè)平均每人每天參加體育鍛煉時間為(單位:分鐘),按鍛煉時間分下列四種情況統(tǒng)計:①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上,有10000名中學(xué)生參加了此項活動,圖1是此次調(diào)查中某一項的流程圖,其輸出的結(jié)果是6400,則平均每天參加體育鍛煉時間在0~20分鐘內(nèi)的學(xué)生的頻率是( )

1

A. 0.64 B. 0.36 C. 6400 D. 3600

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是公比為的等比數(shù)列,且的等比中項,其前項和為;數(shù)列是等差數(shù)列, ,其前項和滿足 (為常數(shù),且)

1)求數(shù)列的通項公式及的值;

2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求經(jīng)過三點A(1,4),B(﹣2,3),C(4,﹣5)的圓的方程.

查看答案和解析>>

同步練習(xí)冊答案