【題目】在平面直角坐標系中,以坐標原點為極點,軸非負半軸為極軸且取相同的單位長度建立極坐標系.已知點軌跡的參數(shù)方程為(,為參數(shù)),點在曲線上.
(1)求點軌跡的普通方程和曲線的直角坐標方程;
(2)求的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】某市化工廠三個車間共有工人1 000名,各車間男、女工人數(shù)如下表:
第一車間 | 第二車間 | 第三車間 | |
女工 | 173 | 100 | y |
男工 | 177 | x | z |
已知在全廠工人中隨機抽取1名,抽到第二車間男工的可能性是0. 15.
(1)求x的值;
(2)現(xiàn)用分層抽樣的方法在全廠抽取50名工人,問應(yīng)在第三車間抽取多少名?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x),若f(x0)=x0,則稱x0為f(x)的“不動點”,若f[f(x0)]=x0,則稱x0為f(x)的“穩(wěn)定點”,函數(shù)f(x)的“不動點”和“穩(wěn)定點”的集合分別記為A和B,即A={x|f(x)=x},B={x|f[f(x)]=x},那么:
(1)函數(shù)g(x)=x2-2的“不動點”為______;
(2)集合A與集合B的關(guān)系是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C以坐標軸為對稱軸,以坐標原點為對稱中心,橢圓的一個焦點為,點在橢圓上,
Ⅰ求橢圓C的方程.
Ⅱ斜率為k的直線l過點F且不與坐標軸垂直,直線l交橢圓于A、B兩點,線段AB的垂直平分線與x軸交于點G,求點G橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,橢圓的中心為坐標原點,焦點,在軸上,且在拋物線的準線上,點是橢圓上的一個動點,面積的最大值為.
(1)求橢圓的方程;
(2)過焦點,作兩條平行直線分別交橢圓于,,,四個點.求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標方程;
(2)設(shè)圓與直線交于點,若點的坐標為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的三個頂點落在半徑為的球的表面上,三角形有一個角為且其對邊長為3,球心到所在的平面的距離恰好等于半徑的一半,點為球面上任意一點,則三棱錐的體積的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;
(2)當時,若對任意的、,恒成立,求實數(shù)的取值范圍;
(3)若函數(shù)在上的值城為區(qū)間,是否存在常數(shù),使得區(qū)間的長度為?若存在,求出的值;若不存在,請說明理由.(注:區(qū)間的長度為).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求的單調(diào)區(qū)間;
(2)若函數(shù)在處取得極大值,求實數(shù)的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com