【題目】

在四棱錐中,側(cè)面底面,,中點(diǎn),底面是直角梯形,,=90°,

I)求證:平面;

II)求證:平面;

III)設(shè)為側(cè)棱上一點(diǎn),,試確定的值,使得二面角45°

【答案】I)證明見解析.

II)證明見解析.

III

【解析】

I)取PD的中點(diǎn)F,連結(jié)EFAF,

因?yàn)?/span>EPC中點(diǎn),所以EF//CD,且

在梯形ABCD中,AB//CD,AB=1,

所以EF//ABEF=AB,四邊形ABEF為平行四邊形,

所以BE//AF

BE平面PAD,AF平面PAD,

所以BE//平面PAD

II)平面PCD底面ABCDPDCD,所以PD平面ABCD

所以PDAD

如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系Dxyz

A1,00),B1,1,0),C0,2,0),P0,01.

所以

又由PD平面ABCD,可得PDBC,

所以BC平面PBD

III)平面PBD的法向量為

所以,

設(shè)平面QBD的法向量為=a,b,c),

,

,得

所以=

所以

注意到,得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1,F2為橢圓C的左、右焦點(diǎn),橢圓C過點(diǎn)M,且MF2F1F2.

1)求橢圓C的方程;

2)經(jīng)過點(diǎn)P2,0)的直線交橢圓CA,B兩點(diǎn),若存在點(diǎn)Qm,0),使得|QA||QB|.

①求實(shí)數(shù)m的取值范圍:

②若線段F1A的垂直平分線過點(diǎn)Q,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校李老師本學(xué)期任高一A班、B班兩個(gè)班數(shù)學(xué)課教學(xué),兩個(gè)班都是50個(gè)學(xué)生,下圖反映的是兩個(gè)班在本學(xué)期5次數(shù)學(xué)檢測(cè)中的班級(jí)平均分對(duì)比,根據(jù)圖表信息,下列不正確的結(jié)論是( )

A. A班的數(shù)學(xué)成績(jī)平均水平好于B班

B. B班的數(shù)學(xué)成績(jī)沒有A班穩(wěn)定

C. 下次B班的數(shù)學(xué)平均分高于A班

D. 在第一次考試中,A、B兩個(gè)班總平均分為78分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

I)若,求函數(shù)的極值和單調(diào)區(qū)間;

II)若在區(qū)間上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電訊企業(yè)為了了解某地區(qū)居民對(duì)電訊服務(wù)質(zhì)量評(píng)價(jià)情況,隨機(jī)調(diào)查100 名用戶,根據(jù)這100名用戶對(duì)該電訊企業(yè)的評(píng)分,繪制頻率分布直方圖,如圖所示,其中樣本數(shù)據(jù)分組為,…….

1)估計(jì)該地區(qū)用戶對(duì)該電訊企業(yè)評(píng)分不低于70分的概率,并估計(jì)對(duì)該電訊企業(yè)評(píng)分的中位數(shù);

2)現(xiàn)從評(píng)分在的調(diào)查用戶中隨機(jī)抽取2人,求2人評(píng)分都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)求的普通方程和曲線C的直角坐標(biāo)方程;

2)求曲線C上的點(diǎn)到距離的最大值及該點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20191126日,聯(lián)合國(guó)教科文組織宣布314日為國(guó)際數(shù)學(xué)日(昵稱:),2020314日是第一個(gè)國(guó)際數(shù)學(xué)日.圓周率是圓的周長(zhǎng)與直徑的比值,是一個(gè)在數(shù)學(xué)及物理學(xué)中普遍存在的數(shù)學(xué)常數(shù).有許多奇妙性質(zhì),如萊布尼茲恒等式,即為正奇數(shù)倒數(shù)正負(fù)交錯(cuò)相加等.小紅設(shè)計(jì)了如圖所示的程序框圖,要求輸出的值與非常近似,則①、②中分別填入的可以是(

A.,B.,

C.D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(Ⅰ)解不等式: ;

(Ⅱ)當(dāng)時(shí),函數(shù)的圖象與軸圍成一個(gè)三角形,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正四棱錐的底面正方形邊長(zhǎng)是3,是在底面上的射影,,上的一點(diǎn),過且與、都平行的截面為五邊形

1)在圖中作出截面,并寫出作圖過程;

2)求該截面面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案