15.已知函數(shù)f(x)滿足f(x)+1=$\frac{1}{f(x+1)}$,當(dāng)x∈[0,1]時(shí),f(x)=x,若在區(qū)間(-1,1]上方程f(x)-mx-m=0有兩個(gè)不同的實(shí)根,則實(shí)數(shù)m的取值范圍是(  )
A.(0,$\frac{1}{2}$]B.(0,$\frac{1}{2}$)C.(0,$\frac{1}{3}$]D.(0,$\frac{1}{3}$)

分析 設(shè)x∈(-1,0),則(x+1)∈(0,1),由于當(dāng)x∈[0,1]時(shí),f(x)=x,可得f(x+1)=x+1.利用f(x)+1=$\frac{1}{f(x+1)}$,可得f(x)=$\left\{\begin{array}{l}{x,x∈[0,1]}\\{\frac{1}{x+1}-1,x∈(-1,0)}\end{array}\right.$,方程f(x)-mx-x=0,化為f(x)=mx+m,畫出圖象y=f(x),y=m(x+1),M(1,1),N(-1,0).可得kMN=$\frac{1}{2}$.即可得出.

解答 解:設(shè)x∈(-1,0),則(x+1)∈(0,1),
∵當(dāng)x∈[0,1]時(shí),f(x)=x,
∴f(x+1)=x+1.
∵f(x)+1=$\frac{1}{f(x+1)}$,
∴f(x)=$\frac{1}{f(x+1)}$-1=$\frac{1}{x+1}$-1,
∴f(x)=$\left\{\begin{array}{l}{x,x∈[0,1]}\\{\frac{1}{x+1}-1,x∈(-1,0)}\end{array}\right.$,
方程f(x)-mx-x=0,化為f(x)=mx+m,
畫出圖象y=f(x),y=m(x+1),M(1,1),N(-1,0).
kMN=$\frac{0-1}{-1-1}$=$\frac{1}{2}$.
∵在區(qū)間(-1,1]上方程f(x)-mx-x=0有兩個(gè)不同的實(shí)根,
∴$0<m≤\frac{1}{2}$,
故選:A.

點(diǎn)評(píng) 本題考查了方程的實(shí)數(shù)根轉(zhuǎn)化為函數(shù)交點(diǎn)問(wèn)題、函數(shù)的圖象,考查了數(shù)形結(jié)合方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知變量x,y滿足不等式組$\left\{\begin{array}{l}{4x+3y-24≤0}\\{2x-y-2≥0}\\{x≥0}\\{y≥2}\end{array}\right.$,則z=(x-4)2+y2取值范圍為[4,17].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=mx-cosx,g(x)=(ax-1)cosx-sinx(a>0).
(1)若函數(shù)y=f(x)在(-∞,+∞)上是單調(diào)遞增函數(shù),求實(shí)數(shù)m的最小值;
(2)若m=1,且對(duì)于任意x∈[0,$\frac{π}{2}$],都有不等式f(x)≥g(x)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=sin4x+2$\sqrt{3}$sinxcosx-cos4x
(1)求函數(shù)的最小正周期.
(2)求出該函數(shù)在[0,π]上的單調(diào)遞增區(qū)間.
(3)關(guān)于x的方程f(x)=k(0<k<2,0≤x≤π)有兩個(gè)解x1,x2時(shí),求x1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若集合A={y|y=2x},B={x|x2-2x-3>0,x∈R},那么A∩B=(  )
A.(0,3]B.[-1,3]C.(3,+∞)D.(0,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.經(jīng)過(guò)平面α外一點(diǎn)和平面α內(nèi)一點(diǎn)與平面α垂直的平面有 ( 。
A.1個(gè)B.0個(gè)C.無(wú)數(shù)個(gè)D.1個(gè)或無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖所示,三視圖表示的幾何體是( 。
A.圓臺(tái)B.棱臺(tái)C.棱柱D.圓錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖是函數(shù)f(x)=Acos($\frac{2}{3}$πx+φ)-1(A>0,|φ|<$\frac{π}{2}$)的圖象的一部分,則f(2015)=( 。
A.1B.2C.$\frac{{\sqrt{3}}}{2}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,向量$\overrightarrow m=(cos(A-B),sin(A-B))$,$\overrightarrow n=(cosB,-sinB)$,且$\overrightarrow m•\overrightarrow n=-\frac{3}{5}$.
(Ⅰ)求sinA的值;
(Ⅱ)若$a=4\sqrt{2},b=5$,求$\overrightarrow{AB}•\overrightarrow{BC}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案