分析 (1)由已知可得:三角形F1F2P的周長是18=2a+2c,即a+c=9,結(jié)合a2=9+c2可得:a值;
(2)將P(1,m)代入橢圓的方程可得m的值.
解答 解:(1)∵橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1(a>3)的兩個焦點分別為F1,F(xiàn)2,
點P(1,m)是該橢圓曲線上一點,
∴三角形F1F2P的周長是18=2a+2c,
即a+c=9,
又由a2=9+c2得:a=5,
(2)由(1)得,橢圓的方程為:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,
將P(1,m)代入得:$\frac{1}{25}$+$\frac{{m}^{2}}{9}$=1,
解得:m=±$\frac{6}{5}\sqrt{6}$
點評 本題考查的知識點是橢圓的簡單性質(zhì),橢圓的標準方程,難度中檔.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [2,$\frac{9}{4}$] | B. | [2,$\frac{9}{4}$) | C. | (-∞,1)∪($\frac{9}{4}$,+∞) | D. | (-∞,1]∪($\frac{9}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{\sqrt{3}}{2}$,1) | B. | [$\frac{\sqrt{5}}{3}$,$\frac{\sqrt{3}}{2}$] | C. | (0,$\frac{\sqrt{5}}{3}$] | D. | (0,$\frac{\sqrt{3}}{2}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com