分析 由條件利用線段的中點公式求得各邊的中點坐標、再利用兩點式求出各邊上的中線所在的直線方程.
解答 解:線段AB的中點為(-$\frac{1}{2}$,-$\frac{1}{2}$),故AB邊上中線所在的直線方程為 $\frac{y+\frac{1}{2}}{3+\frac{1}{2}}$=$\frac{x+\frac{1}{2}}{-2+\frac{1}{2}}$,即 7x+3y+2=0.
線段BC的中點為(0,1),故BC邊上中線所在的直線方程為$\frac{y-1}{0-1}$=$\frac{x-0}{-3-0}$,即x-3y+3=0.
線段AC的中點為(-$\frac{5}{2}$,$\frac{3}{2}$),故AC邊上中線所在的直線方程為$\frac{y-\frac{3}{2}}{-1-\frac{3}{2}}$=$\frac{x+\frac{5}{2}}{2+\frac{5}{2}}$,即 5x+9y-1=0.
點評 本題主要考查線段的中點公式、用兩點式求直線的方程,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{3}$,1) | B. | (-$\frac{1}{3}$,+∞) | C. | (-$\frac{1}{3}$,$\frac{1}{3}$) | D. | (-∞,-$\frac{1}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,0] | C. | (0,+∞) | D. | (-∞,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com