【題目】已知點, 為橢圓:上異于點A,B的任意一點.
(Ⅰ)求證:直線、的斜率之積為-;
(Ⅱ)是否存在過點的直線與橢圓交于不同的兩點、,使得?若存在,求出直線的方程;若不存在,請說明理由.
【答案】(1)見解析(2)
【解析】試題分析:(Ⅰ)設,并用其坐標表示斜率,通過斜率之積,結(jié)合點在橢圓上,化簡可得直線、的斜率之積為.
(Ⅱ)設點 取MN的中點H,則,則|可轉(zhuǎn)化為,聯(lián)立直線與橢圓,結(jié)合韋達定理建立關于斜率k的方程,求解即可.
試題解析:(I)設點,,則
,即
故得證.
(II)假設存在直線滿足題意.
顯然當直線斜率不存在時,直線與橢圓不相交.
①當直線的斜率時,設直線為:
聯(lián)立,化簡得:
由,解得
設點,,則
取的中點,則,則
即 ,化簡得,無實數(shù)解,故舍去.
②當時, 為橢圓的左右頂點,顯然滿足,此時直線的方程為.
綜上可知,存在直線滿足題意,此時直線的方程為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(點均在第一象限),且直線的斜率成等比數(shù)列,證明:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓O:,直線l:.
若直線l與圓O交于不同的兩點A,B,當時,求實數(shù)k的值;
若,P是直線上的動點,過P作圓O的兩條切線PC、PD,切點分別為C、D,試探究:直線CD是否過定點若存在,請求出定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,以O為圓心的圓與直線相切.
(1)求圓O的方程.
(2)直線與圓O交于A,B兩點,在圓O上是否存在一點M,使得四邊形為菱形?若存在,求出此時直線l的斜率;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知m,n,是直線,α,β,γ是平面,給出下列命題:
(1)若α⊥β,α∩β=m,n⊥m,則n⊥α或n⊥β.
(2)若α∥β,α∩γ=m,β∩γ=n,則m∥n.
(3)若mα,nα,m∥β,n∥β,則α∥β
(4)若α∩β=m,n∥m且nα,nβ,則n∥α且n∥β
其中正確的命題是( 。
A. (1)(2)B. (2)(4)C. (2)(3)D. (4)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,討論函數(shù)的單調(diào)性;
(2)設,當時,若對任意,當時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)在圓內(nèi)直徑所對的圓周角是直角.此定理在橢圓內(nèi)(以焦點在軸上的標準形式為例)可表述為“過橢圓的中心的直線交橢圓于兩點,點是橢圓上異于的任意一點,當直線,斜率存在時,它們之積為定值.”試求此定值;
(2)在圓內(nèi)垂直于弦的直徑平分弦.類比(1)將此定理推廣至橢圓,不要求證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com