如圖,橢圓
的左焦點為
,過點
的直線交橢圓于
,
兩點.當直線
經(jīng)過橢圓的一個頂點時,其傾斜角恰為
.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設線段
的中點為
,
的中垂線與
軸和
軸分別交于
兩點,
記△
的面積為
,△
(
為原點)的面積為
,求
的取值范圍.
試題分析:(Ⅰ)解:依題意,當直線
經(jīng)過橢圓的頂點
時,其傾斜角為
1分
則
. 2分
將
代入
,
解得
. 3分
所以橢圓的離心率為
. 4分
(Ⅱ)解:由(Ⅰ),橢圓的方程可設為
. 5分
設
,
.
依題意,直線
不能與
軸垂直,故設直線
的方程為
,將其代入
得
. 7分
則
,
,
. 8分
因為
,
所以
,
. 9分
因為 △
∽△
,
所以
11分
. 13分
所以
的取值范圍是
. 14分
點評:中檔題,求橢圓的標準方程,主要運用了橢圓的幾何性質(zhì),a,b,c,e的關系。曲線關系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。對于三角形面積計算問題,注意應用已有垂直關系及弦長公式。本題應用韋達定理,簡化了解題過程。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在等腰直角
中,
,
,點
在線段
上.
(Ⅰ) 若
,求
的長;
(Ⅱ)若點
在線段
上,且
,問:當
取何值時,
的面積最?并求出面積的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
雙曲線
的虛軸長是實軸長的2倍,則m等于
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
滿足
,記目標函數(shù)
的最大值為7,最小值為1,則
( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
橢圓
:
的右焦點為
且
為常數(shù),離心率為
,過焦點
、傾斜角為
的直線
交橢圓
與M,N兩點,
(1)求橢圓
的標準方程;
(2)當
=
時,
=
,求實數(shù)
的值;
(3)試問
的值是否與直線
的傾斜角
的大小無關,并證明你的結論
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知拋物線
上一定點B(-1,0)和兩個動點
,當
時,點
的橫坐標的取值范圍是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線
的一個焦點與拋物線
的焦點重合,則此雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線
的漸近線與圓
相切,則雙曲線的離心率為( )
A. | B.2 | C. | D.3 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知橢圓
的左焦點為F,過點F的直線交橢圓于A、B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D、E兩點.
(Ⅰ)若點G的橫坐標為
,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S
1,△OED(O為原點)的面積為S
2.
試問:是否存在直線AB,使得S
1=S
2?說明理由.
查看答案和解析>>