【題目】設(shè).
(1)當(dāng)時(shí),f(x)的最小值是_____;
(2)若f(0)是f(x)的最小值,則a的取值范圍是_____.
【答案】 [0,]
【解析】
(1)先求出分段函數(shù)的每一段的最小值,再求函數(shù)的最小值;(2)對(duì)分兩種情況討論,若a<0,不滿足條件.若a≥0,f(0)=a2≤2,即0≤a,即得解.
(1)當(dāng)時(shí),當(dāng)x≤0時(shí),f(x)=(x)2≥()2,
當(dāng)x>0時(shí),f(x)=x22,當(dāng)且僅當(dāng)x=1時(shí)取等號(hào),
則函數(shù)的最小值為,
(2)由(1)知,當(dāng)x>0時(shí),函數(shù)f(x)≥2,此時(shí)的最小值為2,
若a<0,則當(dāng)x=a時(shí),函數(shù)f(x)的最小值為f(a)=0,此時(shí)f(0)不是最小值,不滿足條件.
若a≥0,則當(dāng)x≤0時(shí),函數(shù)f(x)=(x﹣a)2為減函數(shù),
則當(dāng)x≤0時(shí),函數(shù)f(x)的最小值為f(0)=a2,
要使f(0)是f(x)的最小值,則f(0)=a2≤2,即0≤a,
即實(shí)數(shù)a的取值范圍是[0,]
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,有一個(gè)長(zhǎng)方體形狀的敞口玻璃容器,底面是邊長(zhǎng)為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖②),且傾斜時(shí)底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內(nèi)的溶液不會(huì)溢出,角的最大值是多少?
(2)現(xiàn)需要倒出不少于的溶液,當(dāng)時(shí),能實(shí)現(xiàn)要求嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PCD,,,,E為AD的中點(diǎn),AC與BE相交于點(diǎn)O.
(1)證明:平面ABCD.
(2)求直線BC與平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的首項(xiàng),對(duì)任意的,都有,數(shù)列是公比不為的等比數(shù)列.
(1)求實(shí)數(shù)的值;
(2)設(shè)數(shù)列的前項(xiàng)和為,求所有正整數(shù)的值,使得恰好為數(shù)列中的項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù),下列判斷正確的是( )
A.是的極大值點(diǎn)
B.函數(shù)有且只有1個(gè)零點(diǎn)
C.存在正實(shí)數(shù),使得成立
D.對(duì)任意兩個(gè)正實(shí)數(shù),,且,若,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,角,,的對(duì)邊分別為,,,已知.
(1)若,的面積為,求,的值;
(2)若,且角為鈍角,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為常數(shù),且.
(1)若是奇函數(shù),求的取值集合;
(2)當(dāng)時(shí),設(shè)的反函數(shù),且的圖象與的圖象關(guān)于對(duì)稱,求的取值集合;
(3)對(duì)于問(wèn)題(1)(2)中的、,當(dāng)時(shí),不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:直線關(guān)于圓的圓心距單位圓心到直線的距離與圓的半徑之比.
(1)設(shè)圓,求過(guò)點(diǎn)的直線關(guān)于圓的圓心距單位的直線方程.
(2)若圓與軸相切于點(diǎn),且直線關(guān)于圓的圓心距單位,求此圓的方程.
(3)是否存在點(diǎn),使過(guò)點(diǎn)的任意兩條互相垂直的直線分別關(guān)于相應(yīng)兩圓與的圓心距單位始終相等?若存在,求出相應(yīng)的點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,
(1)求在處的切線方程以及的單調(diào)性;
(2)對(duì),有恒成立,求的最大整數(shù)解;
(3)令,若有兩個(gè)零點(diǎn)分別為,且為的唯一的極值點(diǎn),求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com